This document was too large to scan as a whole document, therefore it required breaking into smaller sections.

Document number: SD-WM-DP-145
Section 5 of 12
Title: REVISED 60 DAY SAFETY SCREENING + FERROCYANIDE RESULTS FOR TANK 241-BY-108
ROTARY SAMPLES CORE 98 + CORE 104
Date: 02/02/96 Revision: Rool
Originator: BALDWIN JH
Co: WHC
Recipient:
Co:
References: ECN-629001

THIS PAGE INTENTIONALLY LEFT BLANK.

PART III

WHC-SD-WM-DP-145, REV. 1

SINGLE SHELL TANK WASTE CHARACTERIZATION FOR TANK 241-BY-108 PERFORMED AND REPORTED TO WESTINGHOUSE HANFORD BY PACIFIC NORTHWEST LABORATORY

THE PLOT OF THE TOTAL WALLY

美 生 美

1.

WHC-SD-WM-DP-145, REV. 1 SINGLE SHELL TANK WASTE CHARACTERIZATION

CORE 99

Tank BY-108

Revision 1

September 29, 1995

Prepared by:

KL Silvers

LR Greenwood

RT Steele JM Tingey MW Urie

Pacific Northwest Laboratory

THIS PAGE INTENTIONALLY LEFT BLANK.

WHC-SD-WM-DP-_/45, REV._| TABLE OF CONTENTS

CONT	RIBUTORS LIST
INTR	ODUCTION
1	PHYSICAL DATA
	Sample Receipt and Preparation
	Thermal Analysis
	Density
2	INORGANIC CHEMISTRY
	Inductively Coupled Plasma (ICP) Spectrometry Analysis 2-
	Ion Chromatographic Analysis
	Total Cyanide Analysis
	Total Organic Carbon, Total Inorganic Carbon, & Total Carbon Analysis
3	RADIOCHEMISTRY
	Radiochemical Analysis
	Total Alpha Analyses
	Plutonium Analyses
	Total Beta Analyses
	⁹⁰ Sr Analyses
	Gamma Energy Analyses
	Uranium Analyses

WHC-SD-WM-DP-145, REV.1 TABLE OF CONTENTS (Cont.)

APPENDICES: Primary Analytical Data

Appendix A: Supporting Documentation

Al - Signature List

A2 - WHC Chains of Custody

A3 - PNL Chains of Custody

A4 - Test Instructions

A5 - Sample Preparation Data Sheets

Appendix B: Physical Properties

B1 - Introduction

B2 - DSC/TGA Analysis

B3 - Bulk Density Analysis

Appendix C: Inorganic

C1 - Introduction

C2 - ICP Analysis

C3 - IC Analysis

C4 - Total Cyanide Analysis

C5 - TOC/TIC/TC Analysis

Appendix D: Radiochemistry

D1 - Introduction

D2 - Total Alpha Analysis

D3 - AEA Analysis

D4 - Total Beta Analysis

D5 - Strontium-90 Analysis

D6 - GEA Analysis

D7 - Uranium Analysis

D8 - Radiochemistry Calibration & Control Chart Documentation

WHC-SD-WM-DP-145, REV.1

I-1:	Tank BY-108,	Core 99,	Segment 1
I-2:	Tank BY-108,	Core 99,	Segment 2
I-3:	Tank BY-108,	Core 99,	Segment 3
I-4:	Tank BY-108,	Core 99,	Segment 4
1-1:	Tank BY-108,	Core 99	Sample Receipt Information 1-2
1-2:	Tank BY-108,	Core 99	Homogenization Check Results 1-3
1-3:	Tank BY-108,	Core 99	SAL Procedure List 1-4
1-4:	Tank BY-108,	Core 99	Visual Observations 1-5
1-5:	Tank BY-108,	Core 99	Sample Preparation Procedural Deviations 1-7
1-6:	Tank BY-108, Results	Core 99	Differential Scanning Calorimetric (DSC)
1-7:	Tank BY-108,	Core 99	Thermogravimetric Analysis (TGA) Results 1-12
1-8:	Tank BY-108,	Core 99	Density Results 1-57
2-1a:	Tank BY-108, Fusions) .	Core 99	Sludge, Segments 1 & 2D, ICP (KOH-KNO ₃
2-1b:	Tank BY-108, Fusion)	Core 99	Sludge, Segments 2A & 3A, ICP (KOH-KNO ₃
2-1c:	Tank BY-108, Fusion)	Core 99	Sludge, Segments 4A & 4C, ICP (KOH-KNO ₃
2-1d:	Tank BY-108, Fusions) .	Core 99	Sludge, Segments 4B & 4D, ICP (KOH-KNO ₃
2-le:	Tank BY-108, KNO ₃ Fusion)		Sludge, Post Spike Reanalysis, ICP (KOH2-10
2-2a:	Tank BY-108, NaOH Fusion)		Sludge, Segments 1, 2D, & 3A, ICP (Na ₂ O ₂ 2-11
2-2b:	Tank BY-108, (Na ₂ O ₂ -NaOH F		Sludge, Segments 4A, 4B, 4C, & 4D, ICP
2-2c:	Tank BY-108, NaOH Fusion)	Core 99	Sludge, Post Spike Reanalysis, ICP (Na ₂ O ₂ 2-13
2-3a:	Tank BY-108, Digestion)		Drainable Liquid, Segment 2, ICP (Acid
2-3b:	Tank BY-108, Digestion)	Core 99	Drainable Liquid, Segment 3, ICP (Acid
2-4a:			nable Liquid, Segment 2 & Segment 3,

WHC-SD-WM-DP-/45, REV.) TABLES (Cont.)

2-4b:	BY-108, Core 99 Sludge, Segment 1 and Segment 2A, Anions/Carbon/CN
2-4c:	BY-108, Core 99 Sludge, Segment 2D and Segment 3A, Anions/Carbon/CN
2- 4 d:	BY-108, Core 99 Sludge, Segment 4A and Segment 4B, Anions/Carbon/CN
2-4e:	BY-108, Core 99 Sludge, Segment 4C and Segment 4D, Anions/Carbon/CN
3-1:	Tank BY-108, Core 99 Alpha Analysis Results
3-2:	Tank BY-108, Core 99 Beta Analysis Results 3-9
3-3:	Tank BY-108, Core 99 Gamma Energy Analysis (GEA) Results 3-10
3-4:	Tank BY-108, Core 99 Uranium Analysis Results

WHC-SD-WM-DP- 145, REV. 1

DSC/TGA Scans

(See Section 1.0)

CONTRIBUTORS LIST

WHC-SD-WM-DP/45, REV.

PROJECT MANAGEMENT OFFICE

KL Silvers, Project Manager

TL Almeida, Quality Engineer

BM Thornton, Project Administrator

EA Nelson, Project Assistant TL Burruss, Senior Clerk

LE Tooker, Administrative Assistant

Quality Assurance/Control

KJ Kuhl-Klinger

OP Bredt

RG Swoboda

JD Matheson

HLRF

JM Tingey

SM Heinisch

PR Bredt

DL Alexander

GM Richardson

D Rinehart

SM Tingey

INORGANIC ANALYSIS

MW Urie

DL Baldwin

BJ Cook

PK Melethil

MM O'Neill

JJ Wagner

D Ortiz

DR Sanders

SAL

RT Steele

KJ Smith

FV Hoopes

CE Chamberlin

LP Darnell

IC Henry

JK Rau

RADIOCHEMICAL ANALYSIS

LR Greenwood

SK Fadeff

RT Ratner

TL Trang-Le

KA Poeppel

KK Thomas

INTRODUCTION WHC-SD-WM-DP-145, REV.___

This Data Package contains the results obtained by the Pacific Northwest Laboratory (PNL) 325 Analytical Chemistry Laboratory (ACL) and 325 High Level Radiochemistry Facility (HLRF) staff for the characterization and analyses of Core 99 taken from Single-Shell Tank (SST) BY-108. The characterization and analysis requirements for Tank BY-108 are outlined in the "Fiscal Year 1995 Tank Waste Remediation System Tank Waste Analysis Plan," (WHC-SD-WM-PLN-091, Revision 0). Specific characterization activities are detailed in the "Tank 241-BY-108 Tank Characterization Plan," (WHC-SD-WM-TP-275, Revision 0E).

As stated in the TCP, the work performed on Tank BY-108 represents an opportunistic venture; the results are to be used to gain further information/insight on the nature of Tank BY-108.

The Tank Characterization Plan (TCP) prescribes the analytical requirements in the form of selected methods, analytes of interest, type of preparation, quality control, reporting units and notification limits. The TCP also establishes the analytical priority and provides decision points for the analytical laboratory on whether or not to proceed with additional analysis. The decision points are communicated by "if - then" type criteria. These decision points are administered as follows. If an analytical measurement exceeds a set notification threshold, then the lab proceeds with the additional analyses. This approach, although an effective means of eliminating analytical delays, requires that analyses be performed in series, thus requiring a defined amount of time. In the case of Tank BY-108 sample analyses, 35 calendar days were allotted to complete the entire scope of work. This relatively short analytical window precluded the effective utilization of the "if - then" decision strategy. As a result, a number of managerial decisions were made in the planning stage to perform additional analyses in advance of exceeding notification limits.

In Table C-4 of the TCP the analytes of interest were not identified for ion chromatography (IC) or inductively coupled plasma (ICP). For these

WHC-SD-WM-DP-145, REV.____

methods, the data quality objectives documents were reviewed and analytes of interest identified. The analytes of interest for the IC include nitrate, nitrite, sulfate and phosphate. The analytes of interest identified for the ICP were iron, aluminum, manganese, nickel, bismuth and sodium. These analytes of interest were evaluated against precision and accuracy requirements in the TCP. Two QC approaches were utilized to acquire the accuracy information; serial dilutions were used when the analyte concentration was expected to be high and matrix spikes were used when the analyte concentration was expected to be relatively low or unknown. Although the analytes of interest were the primary focus of each analysis, additional analytes/results were available and are provided for informational purposes.

Specific analyses for each segment and quarter segment taken from Core 99 are described in Test Instructions prepared by the PNL Project Manager in accordance with administrative procedures contained in the Analytical Chemistry Laboratory Procedure Compendium (PNL-MA-599).

Core 99 contained four segments. Each segment was extruded and subsampled into segments and quarter segments at the WHC 222-S Laboratory. The PNL HLRF received the last shipment of BY-108 segments on August 25, 1995. All of the samples were received without chain-of-custody documentation. During the extrusion and sub-sampling of each segment at 222-S, a separate aliquot of sample was removed for thermogravimetric analysis. These aliquots were placed in separate uniquely identified containers and shipped with the remaining sample material. All extruded sample material from Core 99 Segments 1 through 3 were transferred to PNL. Segment 4 was further subsampled and approximately 30 g of each quarter segment was shipped to PNL for analyses. The number of sample containers received, the approximate sample weights and volumes are as follows for Core 99, Segments 1-4. Segment 1 consisted of two sample containers of solids with a combined weight of 56 g. Segment 2 consisted of four sample containers, three had solids with a combined weight of 37 g while one had 230 mL of drainable liquid. Segment 3 consisted of three sample containers, two had solids with a combined weight of 22 g while one had 25 mL of drainable liquid. Segment 4 consisted of eight sample containers of solids with a combined weight of 118 g. Table 1-1 provides a

WHC-SD-WM-DP-145, REV. 1

with a combined weight of 118 g. Table 1-1 provides a more detailed breakdown of sample identification and approximate sample volumes received from WHC.

All Core 99 sample material was homogenized prior to analysis. Segment 1 and Quarter Segment 4B were homogenized and sub-sampled from the top and bottom. Each sub-sample was analyzed in duplicate by ICP and GEA to test the homogenization methodology. The results of the homogenization test are presented in Table 1-2. The small volume of solid sample material received for each quarter segment made it difficult to thoroughly homogenize the samples. The relatively non-homogenous sample material, in conjunction with the small quantities of sample used in the preparations, increased the likelihood of having high relative percent differences (RPDs) between samples and associated duplicates. In some instances, the TCP precision requirement of 90-110% could not be met.

The ACL sample numbers assigned to the segment and quarter segment samples and the associated analyses are listed in Tables I-1 through I-4. The data within this package are divided into three groups: Physical Testing, Inorganic Analysis and Radiochemical Analysis. All chemical analysis data are reported on a wet-weight basis. That is, no corrections have been made for the water content in the samples. The analytical results for the drainable liquids were converted to a g/mL basis using a density of 1.43 g/mL. The density was calculated during the sample preparation (i.e., water leach). All required sample preparations were performed in duplicate. The quality control (QC) requirements for each sample are defined in the Test Instructions. Samples were prepared and analyzed as batches where feasible. A minimum number of QC samples were analyzed in each batch and all QC data are included in this data package.

In several instances, the precision and accuracy identified in the TCP could not be met. This fact is clearly identified and discussed in the following sections. The limited quantity and complex nature of the material tested and the small quantities taken for preparation negatively impact the laboratory's ability to meet the TCP criteria. The TCP criteria appears to be unattainable with any consistency for this matrix.

Analysis	Segment 1 Unhomogenized	Segment 1	
TGA	95-07931		Run in Duplicate
Water Leach		95-07941-C1	Water Leach Sample (IC)
			Water Leach Duplicate
•		95-07941-C3	Methods Blank (one per batch)
			Spike (IC Only) (one per batch)
			Biank Spike (IC Only) (one per batch)
Direct			DSC & Density Sample
		95-07941-D2	DSC & Density Duplicate
		95-07941-D3	Methods Blank (one per batch)
Total Cyanide		95-07941-G1	Total CN Sample
		95-07941-G2	Total CN Duplicate
		95-07941-G3	Methods Blank (one per batch)
		95-07941-G4	Matrix Spike (one per batch)
		95-07941-G5	Blank Spike (one per batch)
Homogenization Test		95-07941-HIT	Homogenization Test Fusion Sample - Top *
Fusion Dissolution		95-07941-H2T	Homogenization Test Fusion Duplicate - Top
кон		95-07941-HCB	Homogenization Test-Fusion Blank
		95-07941-H1B	Homogenization Test Fusion Sample - Bottom
			Homogenization Test Fusion Duplicate - Bottom
Fusion Dissolution			KOH Fusion Sample (ICP, Radchem**)
КОН		•	KOH Fusion Duplicate
			Methods Blank (one per batch)
		1	Post Digestion Blank Spike (ICP only)
		95-07941-H6	Post Digestion Spike (ICP Only)
Carbon		95-07941-J1	Carbon Analysis Sample (TIC/TOC/TC)
			Carbon Analysis Duplicate
		95-07941-J3	Methods Blank (one per batch)
			Matrix Spike (one per batch)
Fusion Dissolution			Na2O2 Fusion Sample (ICP)
Na2O2			Na2O2 Fusion Duplicate (one per batch)
			Methods Blank (one per batch)
			Post Digestion Blank Spike (ICP only)
		95-07941-N6	Post Digestion Spike

WHC-SD-WM-DP-145, REV./ Tank BY-108. Core 99. Segment 1

* Homogenization Test: ICP & GEA
** Fusion Radchem: Total Alpha, Total Beta, Sr-90, PU-239/240, GEA, U)

Analysis	Segment 2 Drainable Uquid	Quarter Segment 2A Unhomogenized	Quarter Segment 2D Unhomogenized	Quarter Segment 2A	Quarter Segment 2D	
TGA	95-07932	95-07933	95-07934			Run in Duplicate
Acid Digestion	95-07932-A1					Acid Digestion Sample (ICP, Radchem *)
•	95-07932-A2					Acid Digestion Duplicate
	95-07932-A3					Methods Blank (one per batch)
	95-07932-A4		!			Matrix Spike (one per batch)
	95-07932-A5					Blank Spike (one per batch)
Water Leach	95-07932-C1			95-07942-C1	95-07943-C1	Water Leach Sample **
	95-07932-C2			95-07942-C2	95-07943-C2	Water Leach Duplicate
	95-07932-C3			95-07942-C3	95-07943-C3	Methods Blank (one per batch)
	95-07932-C4	ŀ		95-07942-C4	95-07943-C4	Spike (IC Only) (one per batch)
	95-07932-C5			95-07942-C5	95-07943-C5	Blank Spike (IC Only) (one per batch)
Direct	95-07932-D1			95-07942-D1	95-07943-D1	Direct Sample ***
	95-07932-D2			95-07942-D2		Direct Duplicate
	95-07932-D3			95-07942-D3	95-07943-D3	Methods Blank (one per batch)
Total Cyanide	95-07932-G1			95-07942-G1	95-07943-G1	Total CN Sample
·	95-07932-G2	!		95-07942-G2	95-07943-G2	Total CN Duplicate
	95-07932-G3		:	95-07942-G3		Methods Blank (one per batch)
	95-07932-G4	í	Î	95-07942-G4	95-07943-G4	Matrix Spike (one per batch)
	95-07932-G5	<u> </u>		95-07942-G5		Blank Spike (one per batch)
Fusion Dissolution				95-07942-H1	95-07943-H1	KOH Fusion Sample (ICP, Radchem****)
KOH		ļ		95-07942-H2	1	KOH Fusion Duplicate
	ı			95-07942-H3		Methods Blank (one per batch)
		•		95-07942-H5	95-07943-H5	Post Digestion Biank Spike (ICP only)
	1 .	<u> </u>		95-07942-H6	95-07943-H6	Post Digestion Spike (ICP Only)
Carbon	95-07932-J1			95-07942-J1	95-07943-J1	Carbon Analysis Sample (TIC/TOC/TC)
	95-07932-J2	i		95-07942-J2	95-07943-J2	Carbon Analysis Duplicate
	95-07932-J3]		95-07942-J3	95-07943-J3	Methods Blank (one per batch)
	95-07932-J4	L		95-07942-J4	95-07943-J4	Matrix Spike (one per batch)
Fusion Dissolution	7			95-07942-N1	95-07943-N1	Na2O2 Fusion Sample (ICP)
Na2O2	ŀ			95-07942-N2	95-07943-N2	Na2O2 Fusion Duplicate (one per batch)
••	1	}	•	95-07942-N3	95-07943-N3	Methods Blank (one per batch)
				95-07942-N5	95-07943-N5	Post Digestion Blank Spike (ICP only)
	1	J .		95-07942-N6	95-07943-N6	Post Digestion Spike

Tank BY-108. Core 99. Segment

2

^{*}Acid Digestion Radchem: Total Alpha, Total Beta, GEA
** Water Leach: IC on Drainable Liquid and Quarter Segments
*** Direct Sample: DSC on Drainable Liquid, DSC and Density on Quarter Segments
**** Fusion Radchem: Total Alpha, Total Beta, Sr-90, PU-239/240, GEA, U)

Anatysis	Segment 3 Drainable Liquid	Quarter Segment 3A Unhomogenized	Quarter Segment 3A	
TGA	95-07935	95-07936		Run in Duplicate
Acid Digestion	95-07935-A1			Acid Digestion Sample (ICP, Radchem*)
	95-07935-A2			Acid Digestion Duplicate
	95-07935-A3			Methods Blank (one per batch)
	95-07935-A4			Spike (one per batch)
	95-07935-A5			Blank Spike (one per batch)
Waler Leach	95-07935-C1		95-07944-C1	Water Leach Sample **
i	95-07935-C2	1	95-07944-C2	Water Leach Duplicate
	95-07935-C3		95-07944-C3	Methods Blank (one per batch)
	95-07935-C4		95-07944-C4	Spike (IC Only) (one per batch)
	95-07935-C5		95-07944-C5	(Blank Spike (iC Only) (one per batch)
Direct	95-07935-D1		95-07944-D1	Direct Sample ***
	95-07935-D2		95-07944-D2	Direct Duplicate .
	95-07935-D3			Methods Blank (one per batch)
Total Cyanide	95-07935-G1		95-07944-G1	Total CN Sample
	95-07935-G2		95-07944-G2	Total CN Duplicate
	95-07935-G3			Methods Blank (one per batch)
	95-07935-G4			Matrix Spike (one per batch)
	95-07935-G5			Blank Spike (one per batch)
Fusion Dissolution			95-07944-H1	KOH Fusion Sample (ICP, Radchem****)
KOH	1 1			KOH Fusion Duplicate
	1			Methods Blank (one per batch)
				Post Digestion Blank Spike (ICP only)
			95-07944-H6	Post Digestion Spike (ICP Only)
Carbon	95-07935-J1		95-07944-J1	Carbon Analysis Sample (TIC/TOC/TC)
	95-07935-J2		95-07944-J2	Carbon Analysis Duplicate
	95-07935-J3			Methods Blank (one per batch)
	95-07935-J4			Matrix Spike (one per batch)
Fusion Dissolution			95-07944-N1	Na2O2 Fusion Sample (ICP)
Na2O2	1 1			Na2O2 Fusion Duplicate (one per batch)
				Methods Blank (one per batch)
				Post Digestion Blank Spike (ICP only)
	1		95-07944-N6	Post Digestion Spike

* Acid Digestion Radchem: Total Alpha, Total Beta, GEA
** Water Leach: IC on Drainable Equid and Quarter Segment

*** Direct Samples: DSC on Drainable Liquid, DSC and Density on Quarter Segment

**** Fusion Radchem: Total Alpha, Total Beta, Sr-90, PU-239/240, GEA, U)

WHC-SD-WM-DP-145, REV. 1 Tank BY-108, Core 99, Segment 4

<u> Table I-4:</u>

	Quarter	Quarter	Quarter Comment 47	Quarter Securent 4D	Quarter	Quarter	Quarter	Quarter	
Analysis	Segment 4A Unhomogenized	Unhomogenized	Unhomogenized	Unhomogenized	Segment 4A	Segment 48	Segment 4C	Segment 40	
1	05,07017	95.07038	95-07939	05-07940					Run in Duplicate
4000					95-07945-C1	95-07946-CI	95-07947-C1	95-07948-C1	Worler Leach Sample (IC)
ACTOR LEGGS					95-07945-C2	95-07946-C2	95-07947-C2	95-0794B-C2	Woler Leoch Duplicate
					95-07945-C3	95-07946-C3	95-07947-C3	95-07948-C3	Methods Blank (one per botch)
					95-07945-CA	95-07946-CA	95-07947-C4	95-07948-C4	Spike (IC Only) (one per batch)
					95-07945-C5	95-07946-C5	95 07947-C5	95-07948-C5	Blank Spike (IC Only) (one per batch)
1					95-07945-D1	95-07946-DI	10-19610-50	95-07948-D1	DSC & Density Somple
					95-07945-D2	95-07946-D2	95-07947-D2	95-07948-02	DSC & Density Duplicate
					95-07945-D3	95-07946-D3	95-07947-D3	95-07948-D3	Methods Blank (one per batch)
4					95-07945-G1	95-07946-G1	95-07947-G1	95-07948-G1	95-07948-G1 Toldi CN Sample
District Charge					95-07945-G2	95-07946-G2	95-07947-G2	95-07948-G2	95-07948-G2 Total CN Duplicate
					95-07945-G3	95-07946-G3	95-07947-G3	95-07948-G3	Methods Blank (one per batch)
					95-07945-G4	95-07946-G4	95-07947-G4	95-07948-G4	Motific Spike (one per botich)
					95-07945-G5	95-07946-G5	95-07947-65	95-07948-G5	Blank Spike (one per batch)
House continued for 1						95-07946-HIT		-	Homogenization Test Fusion Sample - Top *
Eurico Pleachting						95-07946-H2T			Homogenization Test Fusion Duplicate - Top
HCX						95-07946-HCB			Homogenization Test Fusion Blank
			-			95-07946-H1B			Homogenization Test Fusion Sample - Bottom
						95-07946-H2B			Homogenizotion Test Fuston Duplicate - Bottom
Eurica Pierchallon					95-07945-H1	111-94670-29	111-12620-56	95-07946-H1	KOH Fusion Sample (TCP, Radchem**)
101					95-07945-H2	95-07946-H2	95-07947-42	95-07948-H2	KOH Fusion Duplicate
į					95-07945-H3	95-07946-H3	95-07947-H3	95-07948-H3	Methods Blank (one per ballah)
					95-07945-H5	95-07946-H5	95-07947-HS	95-07948-H5	Post Digestion Blank Spike (ICP ank)
					95-07945-H6	95-07946-116	95-07947-H6	95-07948-H6	Post Digestion Moths Spike (ICP Only)
Controlin					95-07945-J1	11-986/0-56	15-07947-33	95-07948-11	Carbon Analysis Somple (IIC/TOC/TC)
					95-07945-J2	95-07946-32	95-07947-32	95-07948-12	Corbon Analysis Duplicate
					95-07945-J3	95-07946-13	95-07947-33	95-07948-J3	Methods Blank (ane per balch)
					95-07945-14	95-07946-J4	95-07947-34	95-07948-34	Matrix Spike (one per batch)
Combon Dissorteinon					95-07945-N1	95-07946-N1	05-07947-NI	95-07948-N1	Na2O2 Fusion Sample (ICP)
COCOIA					95-07945-NZ	95-07946-N2	95-07947-N2	95-07948-NZ	Na2O2 Fusion Duplicate (one per batch)
70704					95-07945-N3	95-07946-N3	95-07947-N3	95-07948-N3	Methods Blank (one per botich)
					95-07945-NS	95-07946-NS	95-07947-N5	95-07948-N5	Post Digestion Blank Spike (ICP only)
					95-07945-No	950/946NO	00-1/04/10-CA	ON-ONATO-CA	Post Ogresion Some

Homogenkoffon Test: ICP & GEA
 Fusion Radichem: Total Alpha, Total Beta, \$r.90, PU:239/240, GEA. U)

WHC-SD-WM-DP-145, REV.1

SECTION 1

PHYSICAL DATA

THIS PAGE INTENTIONALLY LEFT BLANK.

WHC-SD-WM-DP-145, REV. 1

Samples from Tank 241-BY-108 Core 99 were transferred from Westinghouse Hanford Company 222-S Laboratory to the Process Chemistry Group at the Pacific Northwest Laboratory. The segment identification, description of the sample, ACL sample number, WHC vial numbers, sample weight, and shipment numbers and dates are reported in Table 1-1.

<u>Table 1-1</u>: Tank BY-108, Core 99 Sample Receipt Information

Segment ID	Description	ACL Sample Number	WHC Vial Number	Approx. Sample Weight	Shipment Number	Shipment Date
1	Unhomogenized TGA	95-07931	7313	3.3 g	95-S-089	8/15/95
1	Subsampled Solids	95-07941	7504	53.1 g	95-S-089	8/15/95
2	Drainable Liquid	95-07932	7397	230 mL	95-8-093	8/18/95
2A	Subsampled Solids	95-07942	7506	7.1 g	95-S-093	8/18/95
2A	Unhomogenized TGA	95-07933	7315	1.9 g	95-S-093	8/18/95
2D	Subsampled Solids	95-07943	7505	24.0 g	95 - S-093	8/18/95
2D	Unhomogenized TGA	95-07934	7314	4.0 g	95-S-093	8/18/95
3	Drainable Liquid	95-07935	7398	25 mL	95-S-094	8/21/95
3A	Subsampled Solids	95-07944	7379	18.9 g	95-S-094	8/21/95
3A	Unhomogenized TGA	95-07936	7316	3.5 g	95-S-094	8/21/95
4A	Subsampled Solids	95-07945	7716	30.3 g	95-S-095	8/25/95
4A	Unhomogenized TGA	95-07937	7322	4.0 g	95-8-095	8/25/95
4B	Subsampled Solids	95-07946	7717	33.4 g	95-8-095	8/25/95
4 B	Unhomogenized TGA	95-07938	7319	4.3 g	95-S-095	8/25/95
4C	Subsampled Solids	95-07947	7718	34.0 g	95- S-095	8/25/95
4C	Unhomogenized TGA	95-07939	7318	4.6 g	95-S-095	8/25/95
4D	Subsampled Solids	95-07948	7719	32.4 g	95-S-095	8/25/95
4D	Unhomogenized TGA	95-07940	7317	5.3 g	95-S-095	8/25/95

The unhomogenized TGA samples were taken to Room 517 in the 325 Building where thermal analyses were performed. The remaining samples were homogenized

WHC-SD-WM-DP-145, REV. 1

using PNL technical procedure PNL-ALO-135. The sample mass of the subsampled solids from the quarter segments was small; therefore, these samples were homogenized by stirring the sample with a micro spatula. A magnetic stir bar and plate was used to homogenize the drainable liquid samples. The drainable liquids were subsampled to produce TGA samples. These TGA samples were transferred to Room 517 for thermal analysis.

The effectiveness of the homogenization process was verified on two samples (Segments 1 and 4B). GEA and ICP analyses were performed in duplicate on samples from the top and bottom portions of the homogenized samples. The major components and their concentrations for these homogenization subsamples are reported in Table 1-2.

Table 1-2: Tank BY-108, Core 99 Homogenization Check Results

Analyte	Segment	Top Sample	Duplicate	Average	RPD (%)	Bottom Sample	Duplicate	Average	RPD (%)
Cs-137, µ Ci/g	1	20.54	18.08	19.31	13	24.01	20.35	22.18	17
A1, μ g/g	1	138516	133408	135962	4	143659	140111	141885	3
Ca, μg/g	1	1156	1450	1303	23	1330	1520	1425	13
Fe, μg/g	1 .	1494	972	1233	42	1805	1179	1492	42
Na, μg/g	1	98650	97695	98173	1	98980	93886	96433	5
P. μg/g	1	24562	30291	27427	21	29282	28382	28832	3
Cs-137, <i>H</i> Ci/g	4B	115.4	91.83	103.62	23	111.7	101.8	106.75	9
Αὶ, <i>μ</i> g/g	4B	13405	10948	12177	20	11113	11594	11354	4
Ві, µ g/g	4B	3120	2458	2789	24	2697	2753	2725	2
Ca, μg/g	48	12280	9029	10655	31	10657	11329	10993	6
Fe, μg/g	4B	29935	22647	26291	28	25898	27279	26589	5
Na, μg/g	48	102423	122477	· 112450	18	97416	104472	100944	7
P, μg/g	48	20774	29818	25296	36	20644	23052	21848	11
Sr, <i>H</i> g/g	4B	27740	19740	23740	34	25301	25108	25205	1
υ, μ g/g	48	61637	47328	54483	26	52421	53510	52966	2

<u>Sample Preparation</u>: The work scope for Tank BY-108 is comprised of segment, quarter segment and drainable liquid samples. These samples were transferred from the HLRF to the SAL. Due to the high level of radioactivity associated

WHC-SD-WM-DP-145, REV./

with the samples from Tank BY-108, all of the analytical preparations were completed in the hot cell.

Table 1-3 lists the procedures that were used to prepare Tank BY-108 samples for the requested suite of analyses. Also included in the listing is the carbon procedure that was used to conduct in-cell analytical carbon determinations.

Table 1-3: Tank BY-108, Core 99 SAL Procedure List

PNL Procedure Number	Procedure Title
PNL-ALO-103, Rev. 1	Water Leach of Sludges, Soils and Other Solid Samples
PNL-ALO-114, Rev. 1	Solubilization of Metals From Solids Using a Na ₂ O ₂ -NaOH Fusion
PNL-ALO-115, Rev. 1	Solubilization of Metals From Solids Using a KOH-KNO ₃ Fusion
PNL-ALO-128, Rev. 0	HNO ₃ -HCl Acid Extraction of Liquids for Metals Analysis Using a Dry-Block Heater
PNL-ALO-129, Rev. O	HNO ₃ -HCL Acid Extraction of Solids Using a Dry-Block Heater
PNL-ALO-285, Rev. 0	Total Cyanide by Remote Microdistillation and Argentometric Titration
PNL-ALO-381, Rev. 1	Direct Determination of TC, TOC, and TIC in Radioactive Sludges and Liquids by Hot Persulfate Method

Segment 1 and Quarter Segment 4B homogenization check samples were prepared for ICP and GEA by Ni/KOH-KNO₃ fusion. Portions of the same segment/quarter segment were acid digested for solubility observations. Segment 1 acid dissolution resulted in a clear solution with a few milligrams of gray solids on the container bottom. Segment 4B acid dissolution resulted in a clear solution with a layer of gray or reddish particulates at the top of the aqueous layer. When disturbed, the layer moved downward to the container bottom subsequently turning the entire solution very cloudy. The particulates remained suspended for hours before reforming in a layer at the top of the container.

WHC-SD-WM-DP-45, REV. /

Table 1-4 describes subjective visual data for each of the 10 segment/quarter segments samples received from the HLRF.

Table 1-4: Tank BY-108, Core 99 Visual Observations

Segment/Quarter Segment Identification	Observation
Segment 1 Solids	Beige colored, concrete textured sludge with dark colored flecks throughout.
Segment 2 Drainable Liquid	Approximately 200 mL of clear liquid with a thin layer of light beige colored solids on the bottom of the container.
Quarter Segment 2A Solids	Appearance like that of ground ice. Slides across container bottom in the same manner as wet ice.
Quarter Segment 2D Solids	Sandy beige colored sludge with a small 1/8" layer of clear liquid standing on top.
Segment 3 Drainable Liquid	Approximately 50 mL of clear liquid with a thin layer of reddish colored solids on the bottom of the container.
Quarter Segment 3A Solids	Moist, concrete textured, reddish brown sludge
Quarter Segment 4A Solids	Dark, sticky, thick, red sludge
Quarter Segment 4B Solids	Dark, sticky, thick, red sludge
Quarter Segment 4C Solids	Dark, sticky, thick, red sludge
Quarter Segment 4D Solids	Dark, sticky, thick, red sludge

Sample preparations/distributions of two drainable liquids and 8 solids samples involved:

- Water leaching of liquid and solid samples for IC and ICP.
- Ni/KOH-KNO₃ fusions of solid samples for ICP, GEA, Total Alpha, Total Beta, AEA for Pu,Np,Am, Uranium, and Sr/Y-90.
- Zr/Na₂O₂-NaOH fusions of solid samples for ICP.
- Acid digestions of liquid samples for ICP, Total Alpha, Total Beta and GEA.

WHC-SD-WM-DP-145, REV. /

- Microdistillation of liquid and solid samples for Cyanide.

Predigestion spikes were performed for ICP metals (drainable liquid samples only), IC anions, cyanide, and TOC (hot persulfate only). Post digestion spiking, where required by the Test Instruction, was done by the functional group performing the analysis.

During sample preparation, the SAL may have made deliberate minor deviations to sample preparatory procedures for one or more of the following reasons:

- Insufficient sample was available to conduct the analyses per procedure while maintaining the level of quality control requested.
- Sample weights and/or final volumes were reduced to facilitate waste minimization.
- Sample weights and/or final volumes were altered to increase the concentration of certain analytes of interest. This was done to meet the procedural concentration ranges needed to perform the analyses.

Sample sizes and final volumes for all sample preparations are documented on the Sample Preparation Data Sheets included in Appendix A. Table 1-5 lists the sample preparatory procedure deviations performed during the processing of Tank BY-108.

WHC-SD-WM-DP-/4/5, REV./

Table 1-5: Tank BY-108, Core 99 Sample Preparation Procedural Deviations

ALO Number	Prep Method	Sample Size Deviation	Sample Volume Deviation	Reagent Deviation	Observed Effect
95-07932-A	Acid	Yes	No	No	None
95-07935-A	Acid	Yes	No	No	None
95-07932-C	Water	Yes	Yes	No	None
95-07935-C	Water	Yes	Yes	No	None
95-07941-C	Water	No	Yes	No	None
95-07942-C	Water	Yes	Yes	No	None
95-07944-C	Water	Yes	Yes _	No	None
95-07945-C	Water	Yes	Yes	No	None
95-07946-C	Water	Yes	Yes	No	None
95-07947-C	Water	Yes	Yes	No	None
95-07948-C	Water	Yes	Yes	No	None

Thermal Analysis

Scanning Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) were performed on the unhomogenized solids and drainable liquids from Core 99 Segments 1 through 4. These two thermal analysis techniques are useful in determining the thermal stability and reactivity of the material. DSC measures heat released or absorbed while the temperature of the sample is increased at a constant rate. Data generated by the DSC analysis is often used to measure thermal decomposition temperatures, heats of reaction, reaction temperatures, melting points and solid-solid transition temperatures. TGA measures the mass of a sample while the temperature of the sample is increased at a constant rate. The TGA data is used to measure thermal decomposition temperatures, water content and reaction temperatures. Both methods can be modified to measure isothermal changes in the material and provide complimentary information.

WHC-SD-WM-DP-//5, REV. /
The calibration of the DSC and TGA instruments were checked before running these samples. An indium standard was run on the DSC to check the temperature and enthalpy calibrations. The balance calibration of the TGA was checked with a 100 mg standard weight, and the temperature calibration was checked with a lead standard. The temperature and enthalpy calibration checks were all within 1°C and 0.2 J/g of their reported values, and the balance calibration was within 0.01 mg.

The results from the DSC and TGA analyses are reported in Tables 1-6 and 1-7, respectively. The temperature range of the scans was from ambient to 550°C, with a scan rate of 10°C per minute. These analyses were all performed in platinum pans under nitrogen cover gas.

The major transition in all of these samples was an endotherm due to water loss from the sample. This was also the major mass loss in all of the samples. The onset temperature of this transition could not be measured because the transition began at the initial temperature of the run (ambient temperature). The water loss endotherm ends at approximately 200°C. This endotherm is a complicated system of several unresolvable transitions with each sample containing slightly different proportions of these transitions.

An exotherm was identified in all quarter segment samples from Segment 4 and the drainable liquids. This exotherm has an onset temperature of between 197 and 225°C. The enthalpy of this transition varied with each quarter segment. The temperature range for this transition was from 195 to 400°C. It appears that this exotherm is commingled with some endothermic behavior which cannot be resolved; therefore, it is difficult to determine onset temperatures for each sample. The enthalpy of this transition is also dependent upon resolution of this exotherm for the commingled endotherms and the initial water loss endotherm. In most cases the most conservative approach (the largest exothermic energy) has been taken.

 $\label{eq:WHC-SD-WM-DP-} WHC-SD-WM-DP- \underline{//5,R} \text{EV./}\\ In Segments 1 through 3 a second endotherm is observed.$ transitions are observed in this endotherm and the onset temperature varies depending upon the size of the first transition in comparison with the second

WHC-SD-WM-DP-145, REV. /

<u>Table 1-6</u>: Tank BY-108, Core 99 Differential Scanning Calorimetric (DSC) Results

	Segment	Enthalpy		
Sample Number	ID	(J/g)	Range (°C)	Onset (*C)
7313	1	725.6 311.2	8-153 193-333	219
7313-2	1	521.2 305.2	16-158 181-343	221
95-07932	2-DL	737.5 -11.6 -14.9	45-226 226-265 265-340	278
95-07932-2	2-DL	1243.6 -35.8 -10.5	20-216 216-270 272-330	279
7315	2A	201.3 108.6	48-227 227-324	250
7315-2	2A	177.3 114.1	43-231 231-322	251
7314	2D	263.0 127.3 -2.8	22-204 215-332 375-430	261 385
7314-2	20	194.7 161.7 -2.8	24-185 187-345 380-430	211
95-07935	3-DL	1178.2 26.1	31-236 236-303	237
95-07935-2	3-DL	1279.2 26.9	32-239 239-300	238
7316	3A	303.4 81.1 -1.2	28-230 236-336 400-427	249
7316-2	3A	343.5 101.1 -0.7	12-215 233-327 430-450	259
7322	4A	385.5 33.6	22-183 243-310	259
7322-2	4A	556.7	33-255	
7319	4B	651.6 -191.1	22-193 200-411	207

<u>Table 1-6</u>: Tank BY-108, Core 99 Differential Scanning Calorimetric (DSC) Results (Cont.)

Sample Number	Segment ID	Enthalpy (J/g)	Range (°C)	Onset (°C)
7319-2	4B	476.0 -133.2	19-224 224-385	
7318	4C	644.5 -67.0	26-192 192-375	197
7318-2	4C	876.6 -77.8	15-196 200-361	237
7317	4D	693.4 -73.7	23-195 205-369	206
7317-2	4D	613.9 -60.2	30-193 203-350	204

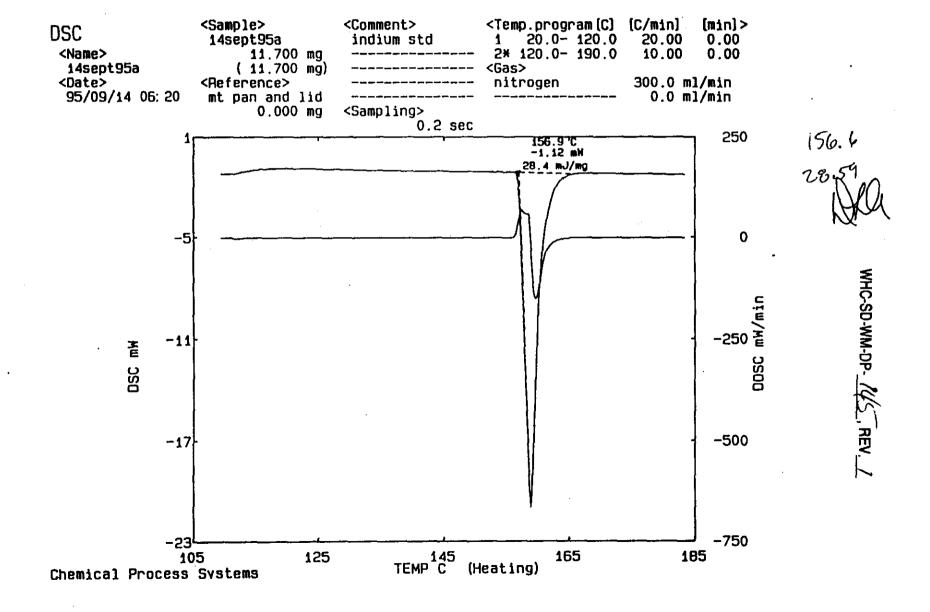
transition. It appears that the onset temperature for the first transition in this endotherm is $220\,^{\circ}\text{C}$, and the onset temperature for the second transition is between 250 and $260\,^{\circ}\text{C}$.

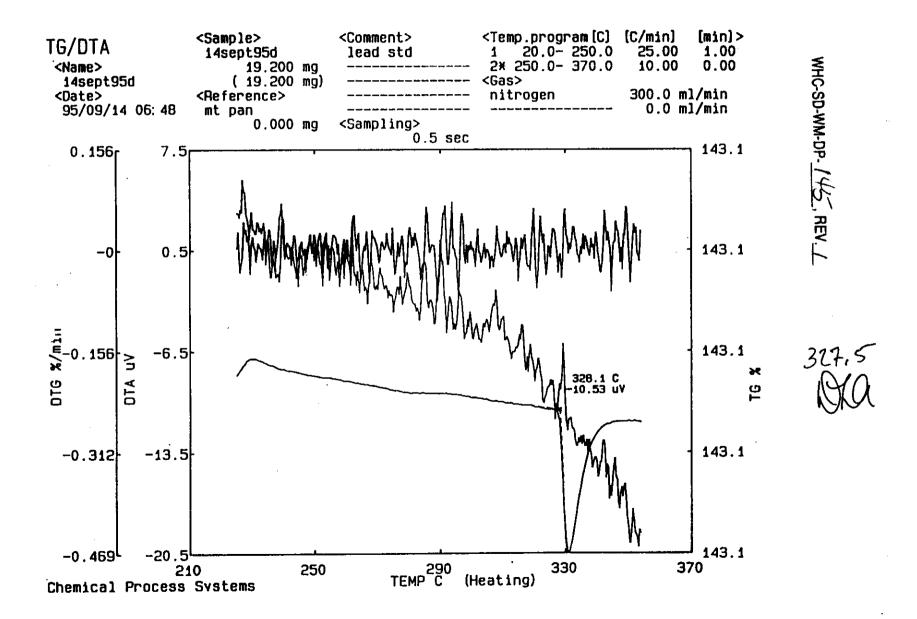
The TGA analysis also indicated two different waste types in this core sample. All of the segments had a large mass loss associated with the water loss endotherm. This mass loss was observed between ambient temperature and 180°C. A small mass loss was observed over the remainder of the temperature range of the TGA analysis for all of the Segment 4 samples, but no significant transitions were observed at higher temperatures. In the Segment 1 through 3 solid samples, a second significant mass loss was observed. This mass loss has an onset temperature of approximately 245°C. This transition correlates with the second endothermic transition observed in the DSC analyses. These samples also continued to have a small mass loss throughout the remainder of the temperature range.

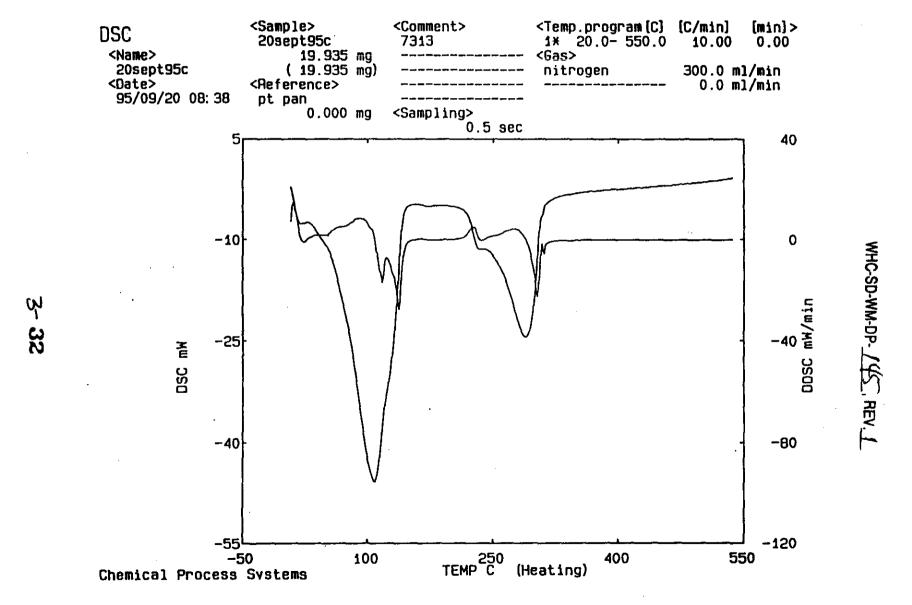
WHC-SD-WM-DP-145, REV./

Table 1-7: Tank BY-108, Core 99 Thermogravimetric Analysis (TGA)

Results


	VE201C2	, ————————————————————————————————————	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Sample	Segment	Range (°C)	Onset (°C)	Nass Loss (%)
7313	1	23-157 157-309 309-548	247	32.7 9.7 2.6
7313-2	1	28-145 145-318 318-548	249	26.1 13.2 3.5
7316	3A	22-212 212-344 344-548	310	14.1 0.9 0.2
7316	3A	40-170 170-548		35.0 1.9
7314	2D	27-198 198-328 328-545	245	17.9 2.2 0.9
7314-2	20	23-203 203-328 328-442 442-545	242 393	15.5 3.3 0.8 0.4
7315	2A	23-136 136-256 256-545		7.8 3.6 0.8
7315-2	2A	23-130 130-215 215-545		6.6 5.2 0.1
7317	4D	23-167 167-550		40.6 5.1
7317-2	4D	22-178 178-549		44.0 3.8
7318	4C	24-173 173-549		35.6 5.3
7318-2	4C	24-172 172-549		36.2 4.5
7319	4 B	22-187 187-403 403-548	309	35.3 7.9 1.3


WHC-SD-WM-DP-145, REV.1


<u>Table 1-7</u>: Tank BY-108, Core 99 Thermogravimetric Analysis (TGA) Results (Cont.)

Sample	Segment	Range (°C)	Onset	Mass Loss (%)
7319-2	4B	23-172 172-412 412-549	300	35.9 8.1 0.8
7322	4A	22-160 160-550		25.8 3.1
7322-2	4A	23-171 171-548		25.1 3.4
95-07935	3-DL	23-227 227-548		52.1 0.8
95-07935	3-DL	24-235 235-548		52.6 0.7
95-07932	2-DL	28-218 218-548		52.6 0.8
95-07932	2-DL	23-236 236-547		46.7 0.6

WHC-SD-WM-DP-145, REV. / DSC/TGA SCANS

NY.

TEMP C

<Comment> 7313-2

<Sample>
20sept95e

<Reference> pt pan

-55

Chemical Process Systems

29.313 mg (29.313 mg)

0,000 mg

DSC

<Name>
 20sept95e
 <Date>
 95/09/20 10: 14

<Temp.program[C] 1* 20.0~ 550.0 <Gas>

450

(Heating)

nitrogen

[C/min] 10.00

300.0 ml/min 0.0 ml/min

[nim] >

0.00

-180

600

WHC-SD-WM-DP-

<Comment> 95-07932

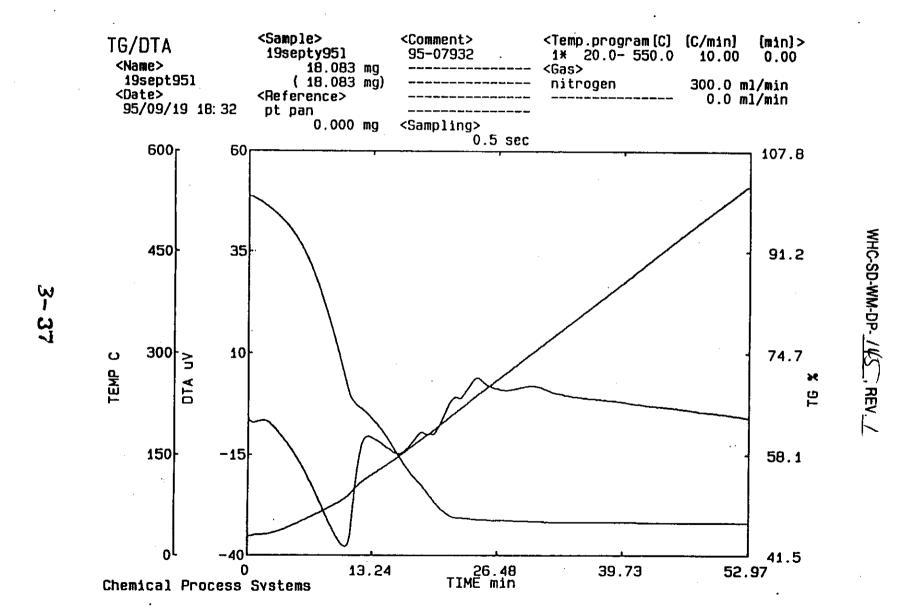
<Sample>

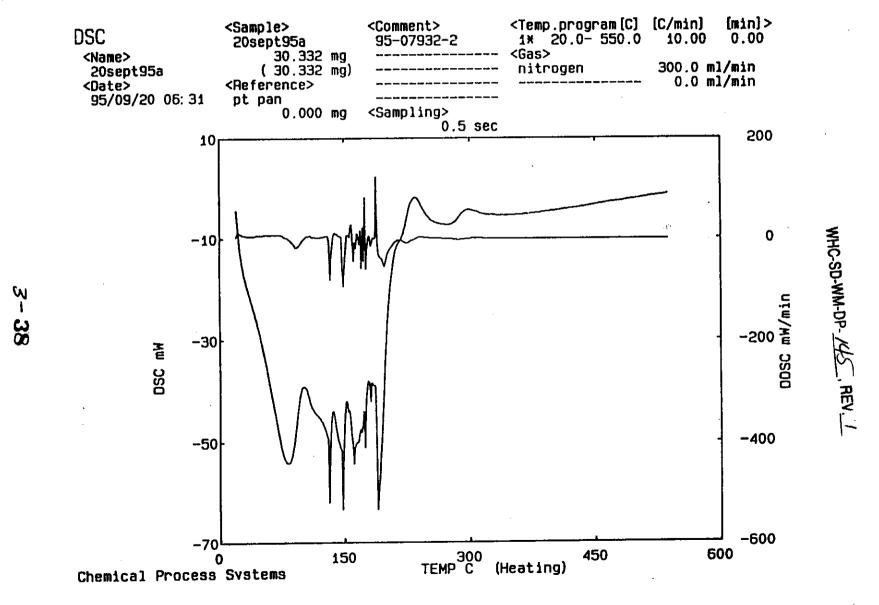
DSC

<Name>

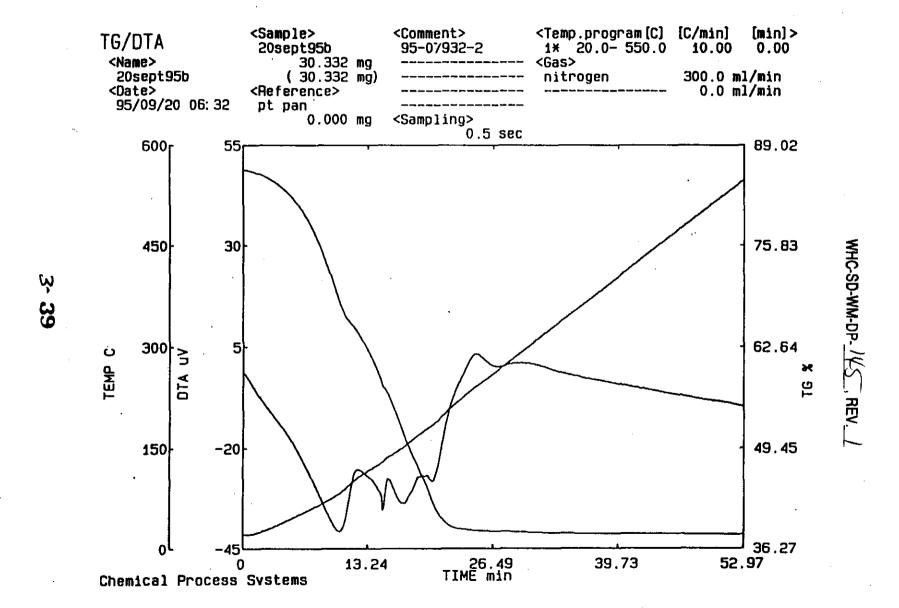
Chemical Process Systems

<Temp.program(C)
1* 20.0- 550.0</pre>

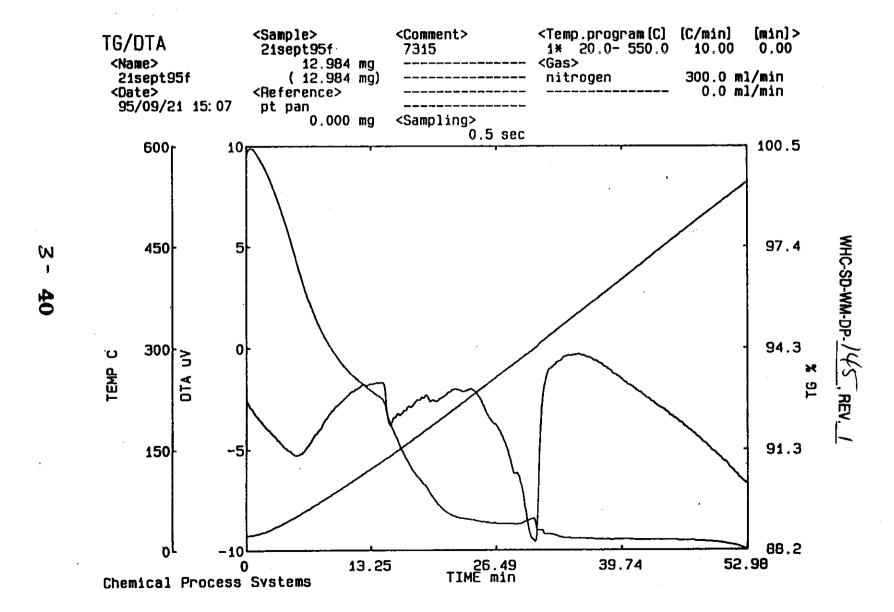

<Gas>

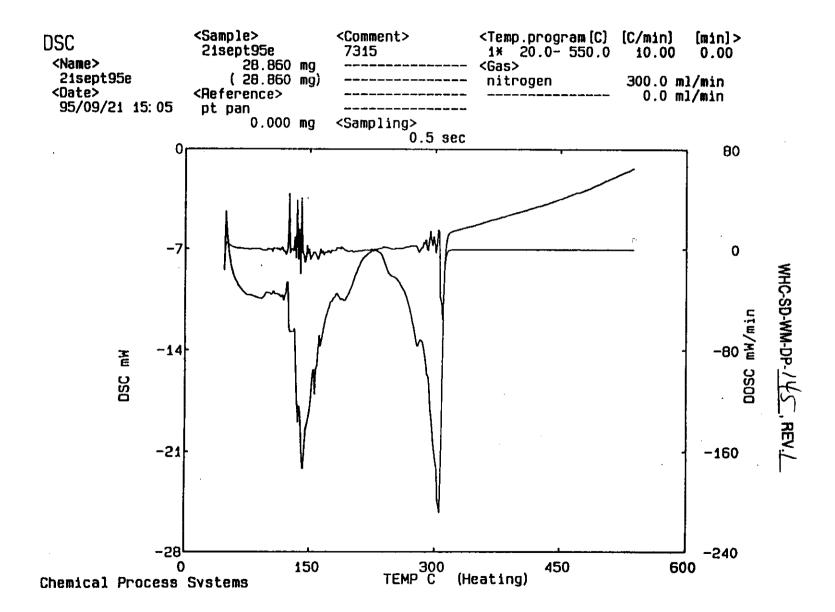

nitrogen

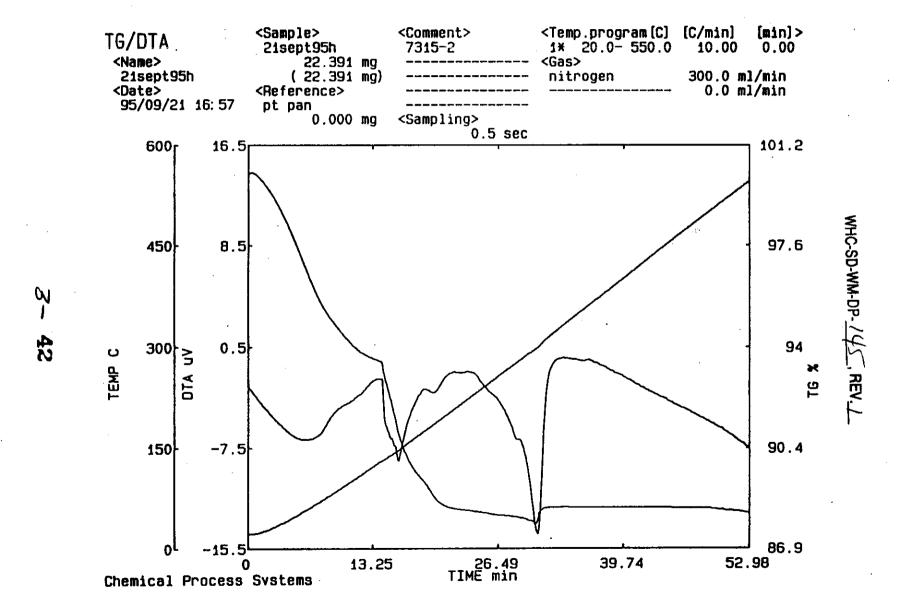
[C/min] 10.00


(min)>

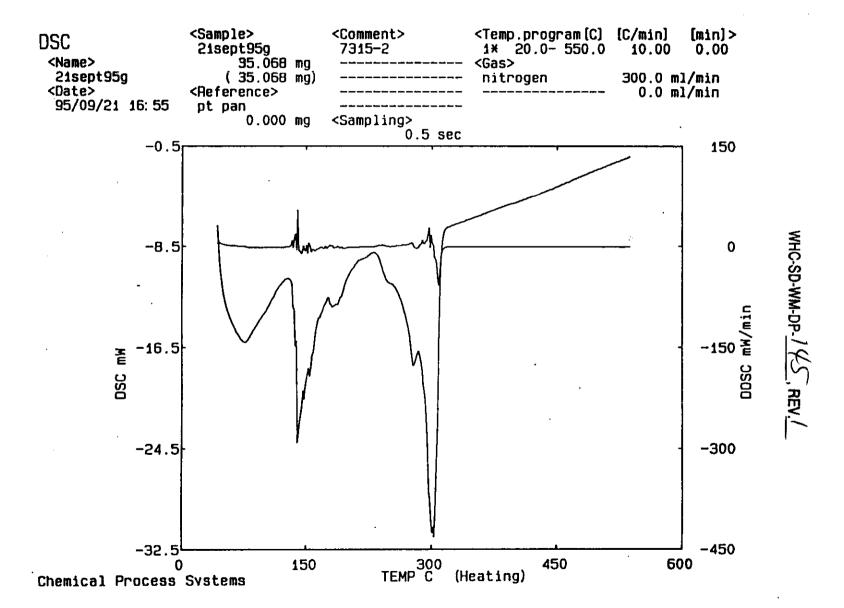
0.00

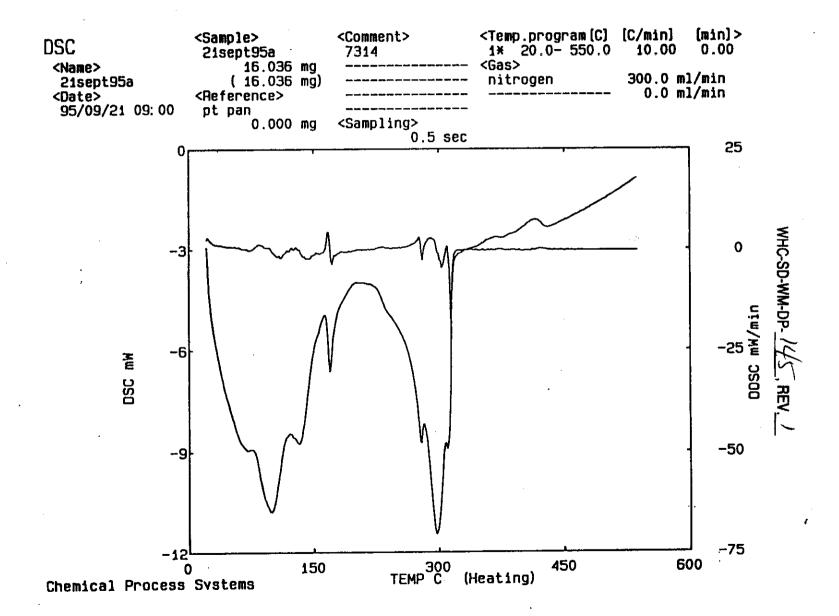


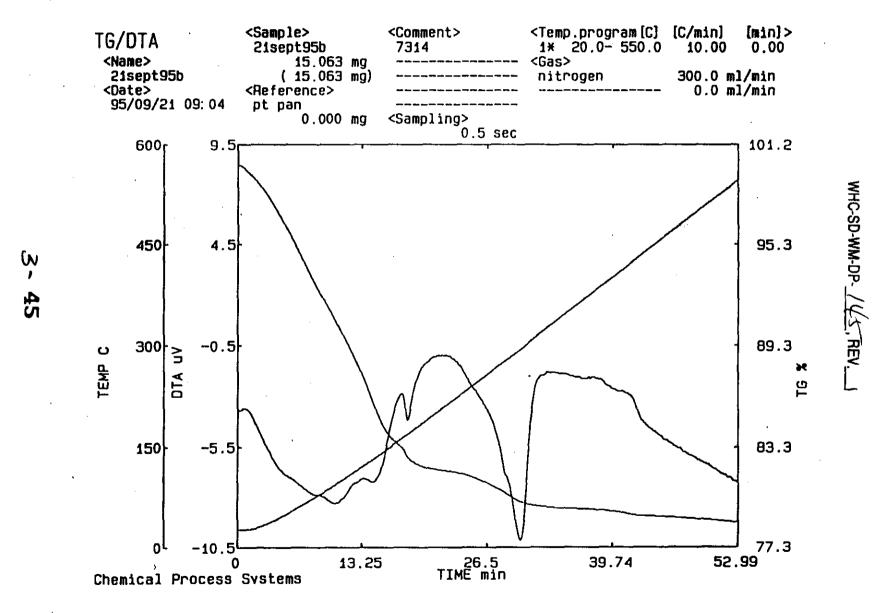

(Gen

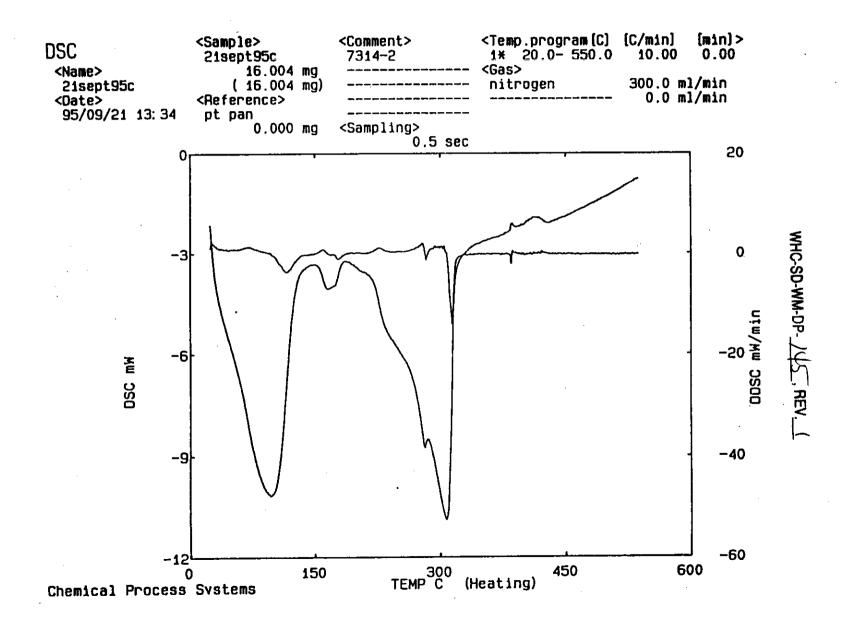


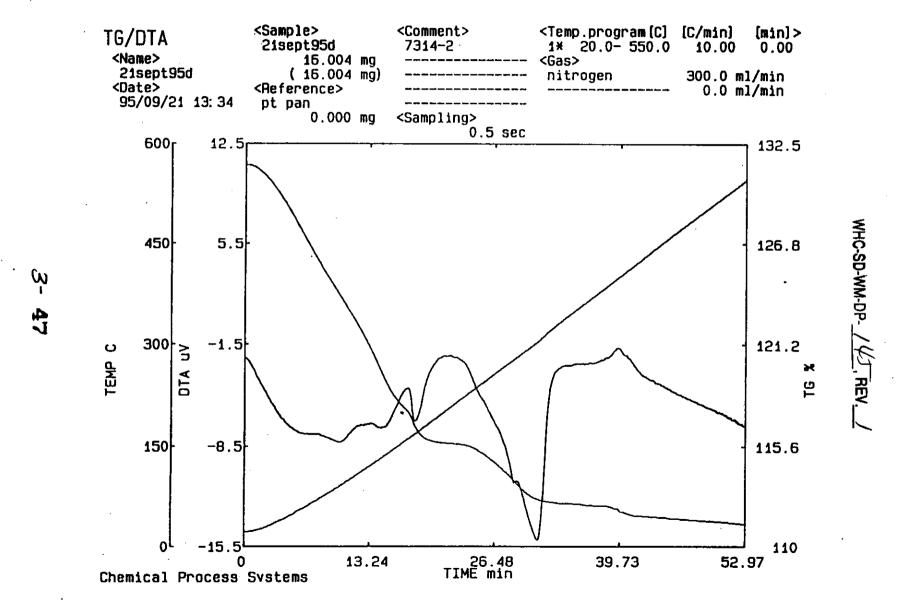
'HO

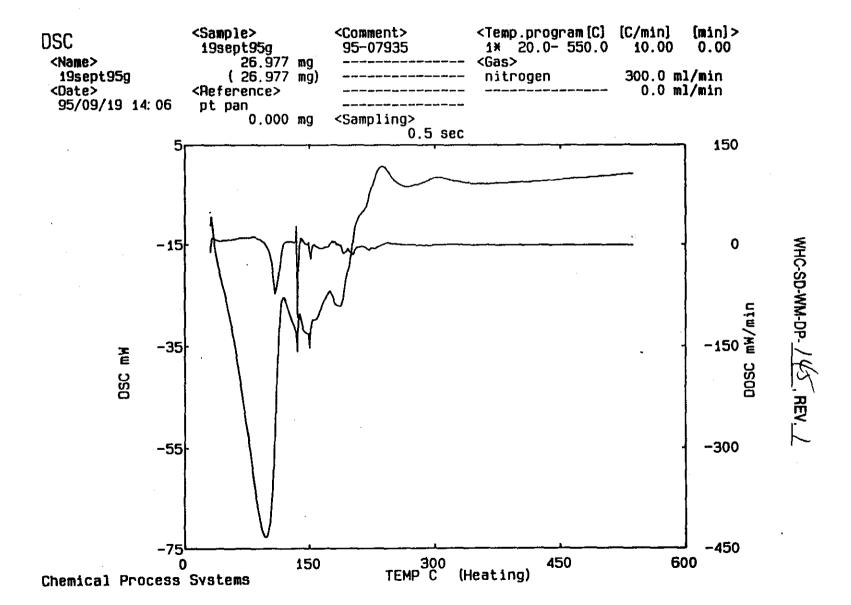


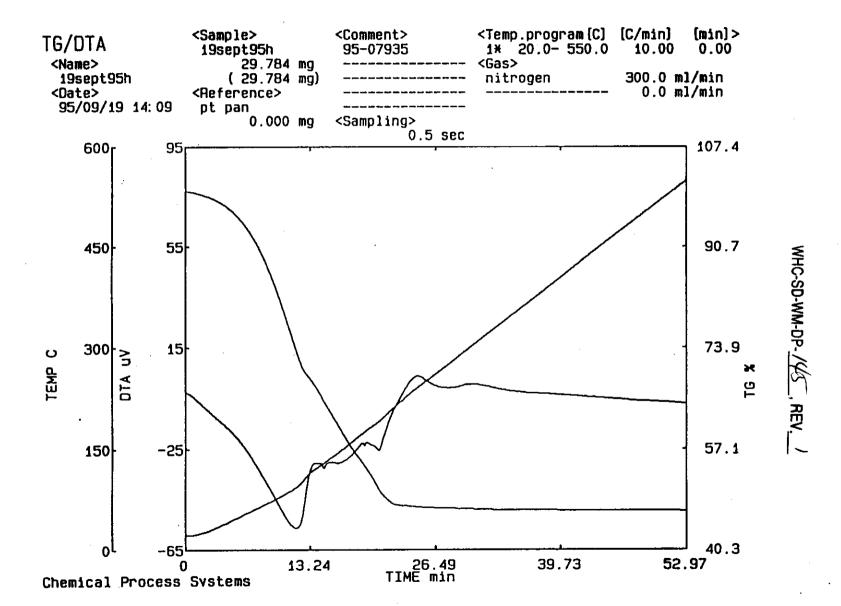


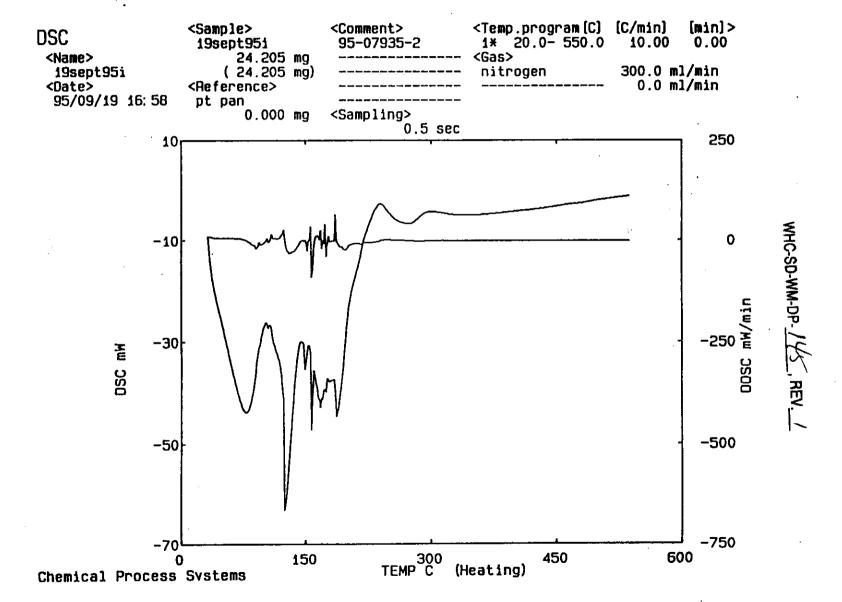

1. Gen

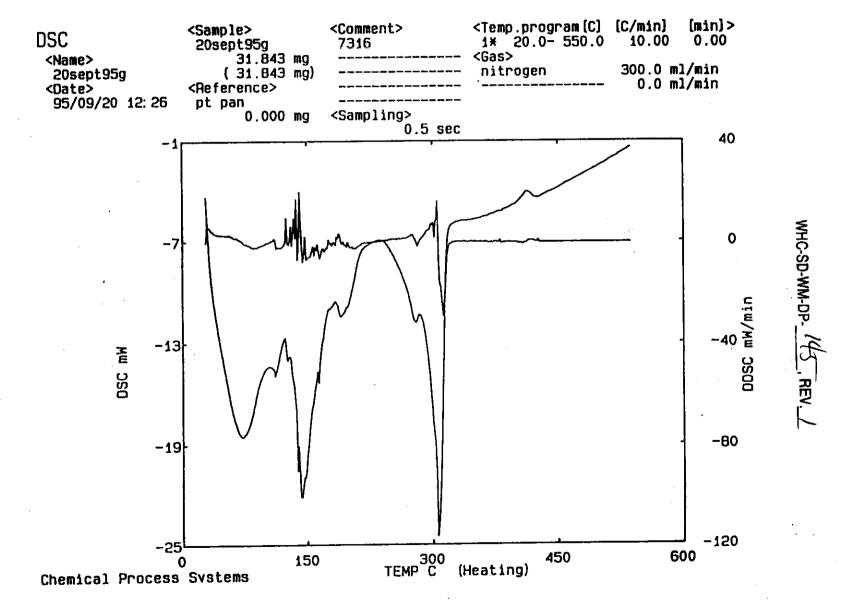


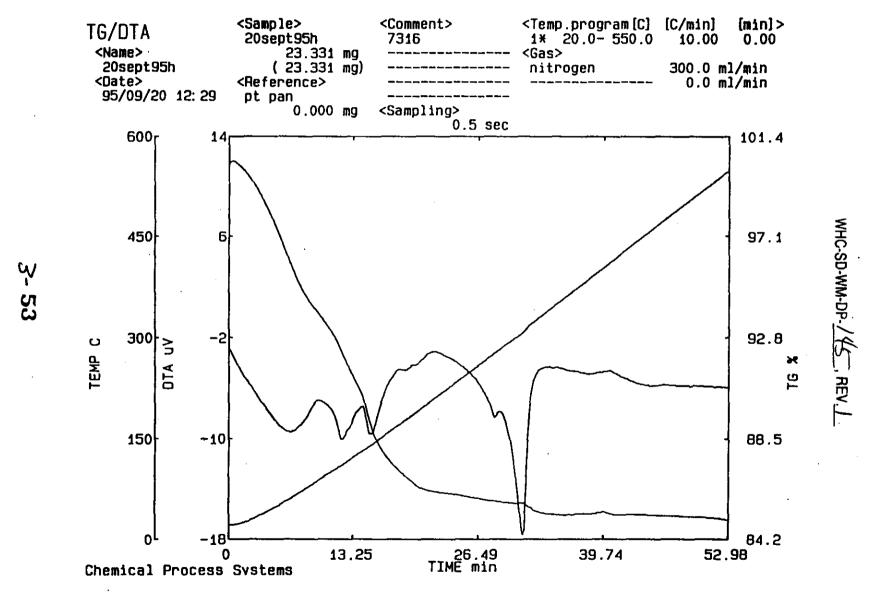




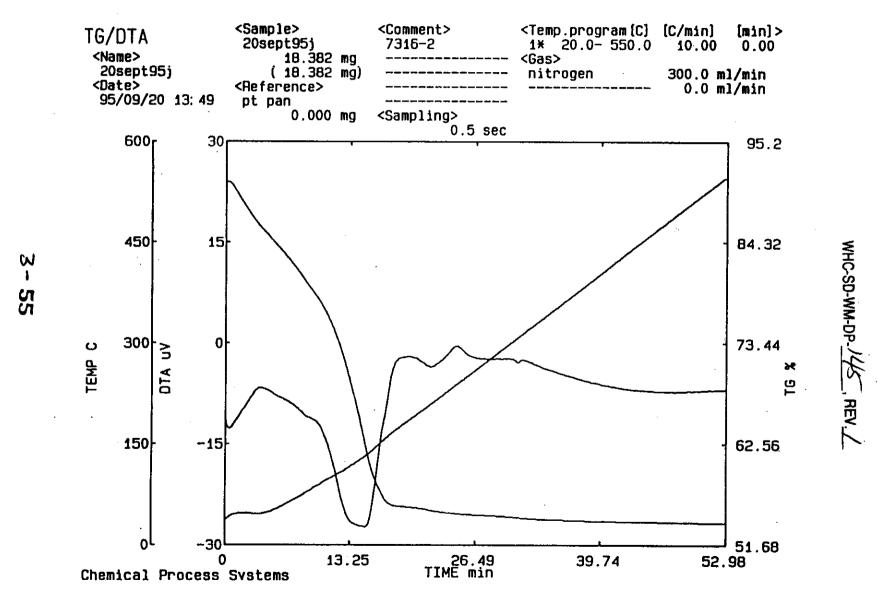




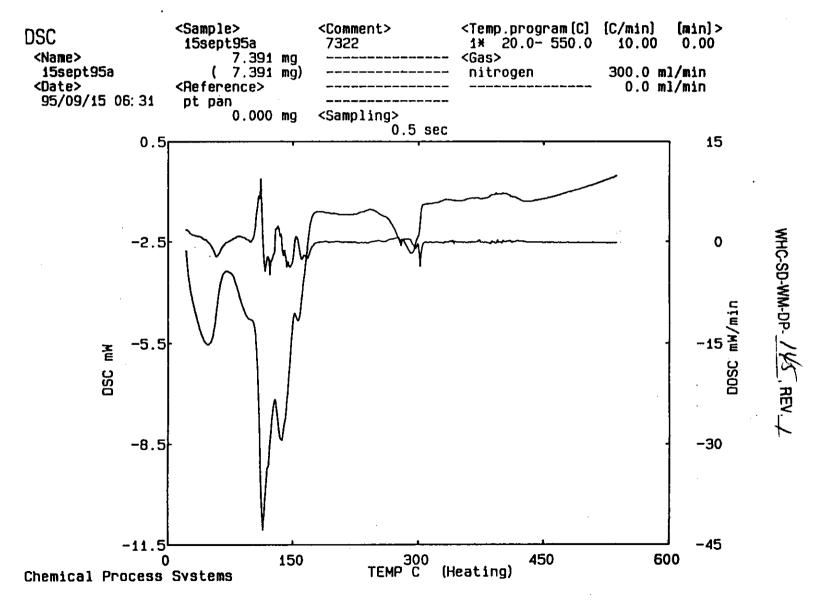




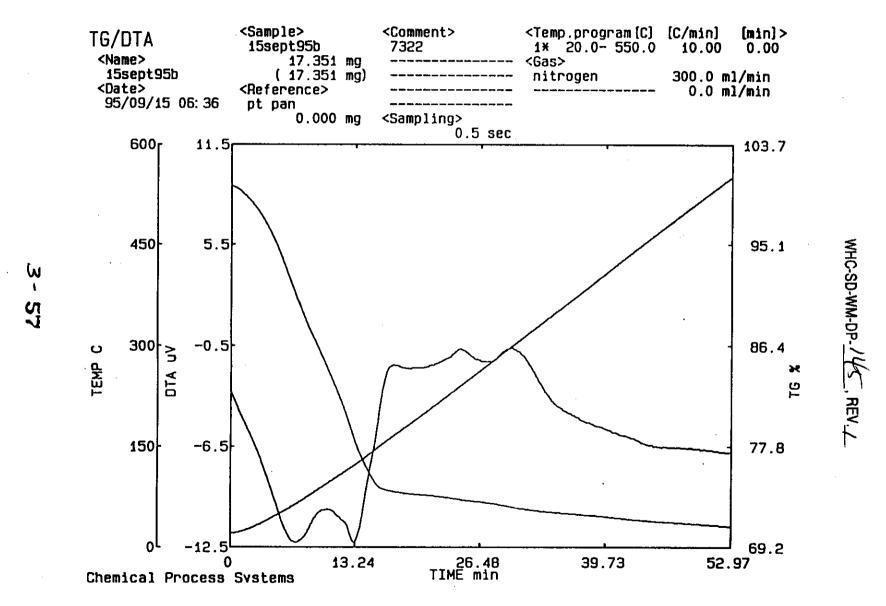
(P. ")


(1)

<Comment>

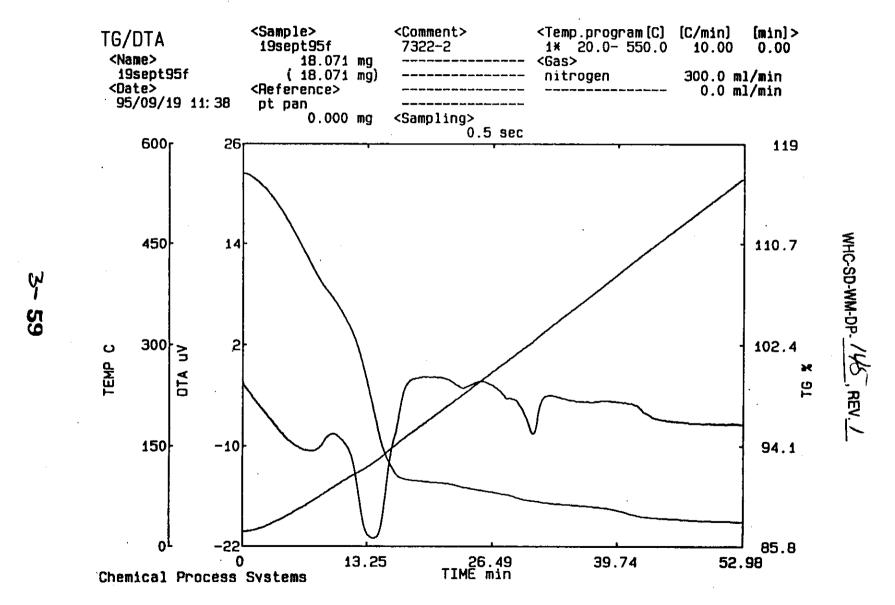

<Sample>

[C/min]

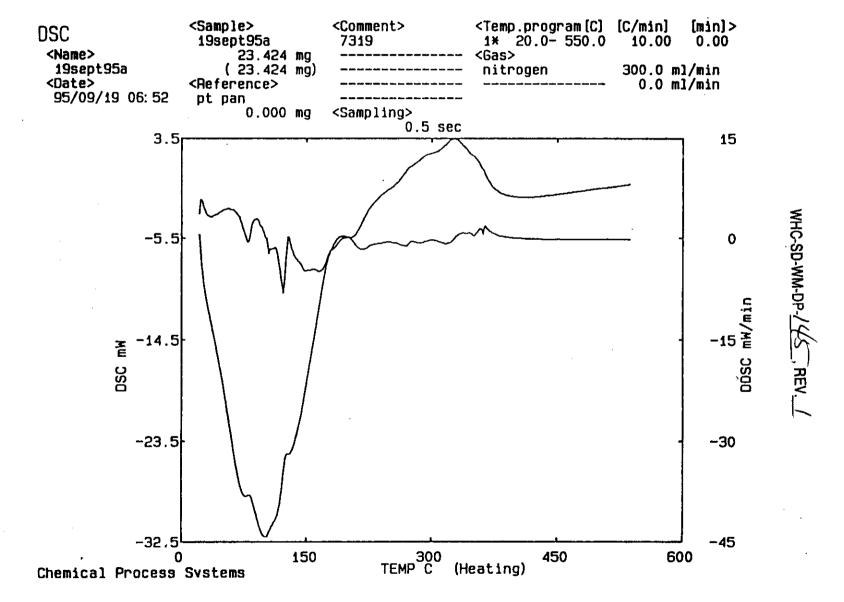


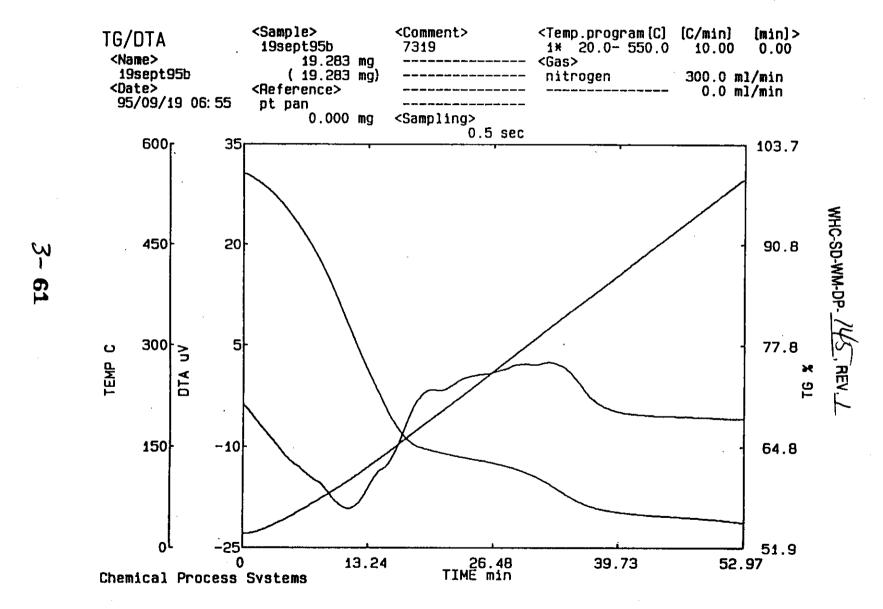


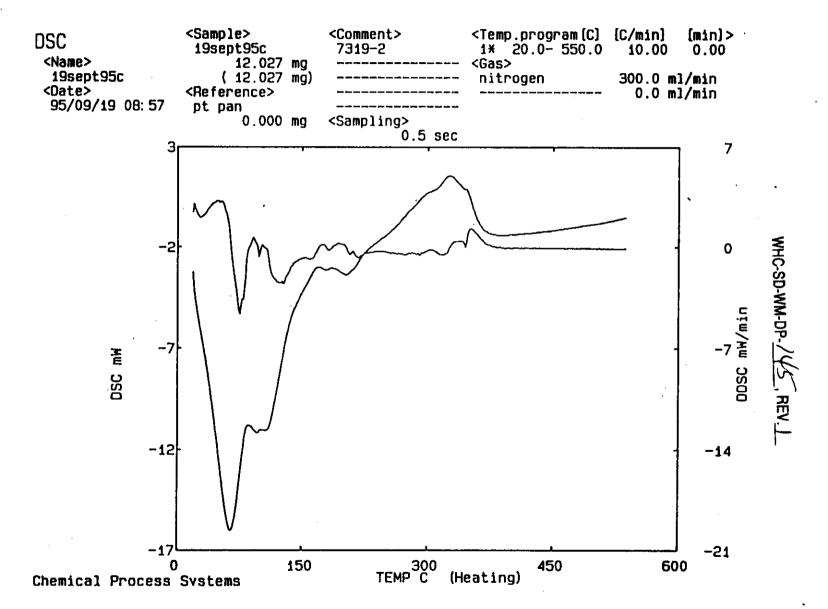
10m

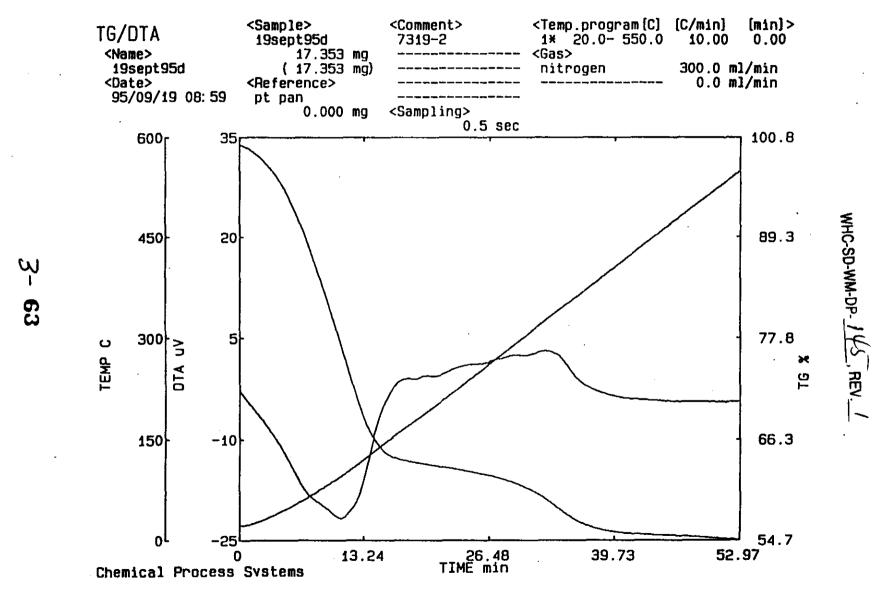


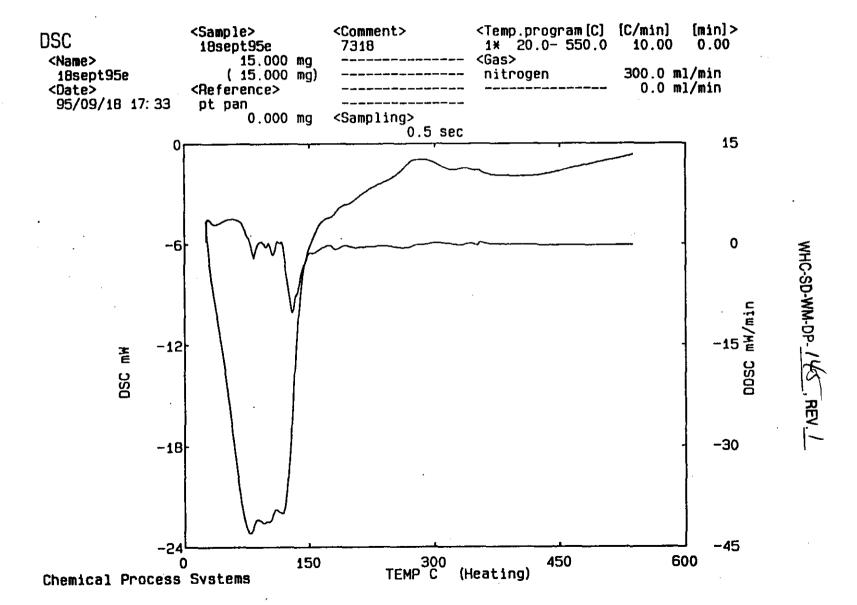
1. Jen

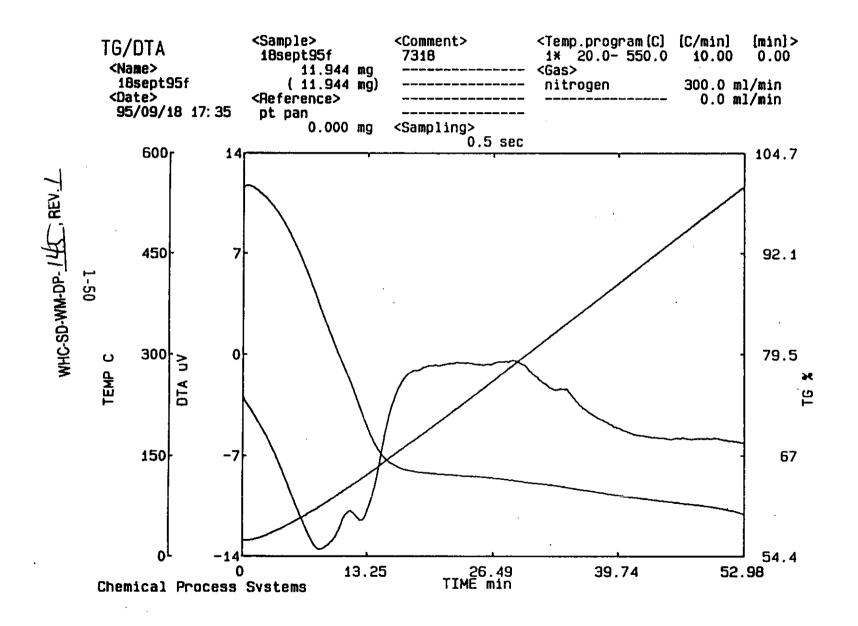


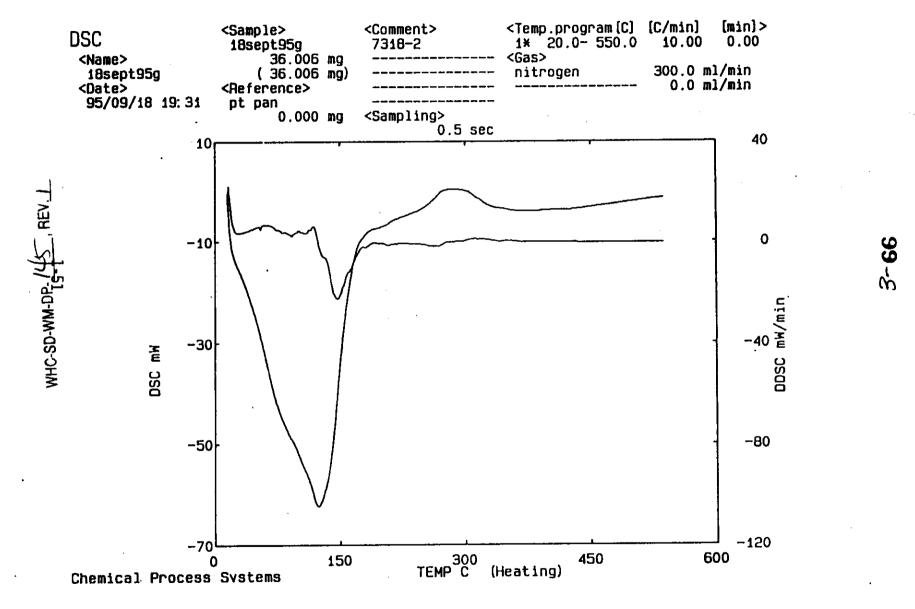

1.CAN


(C^)

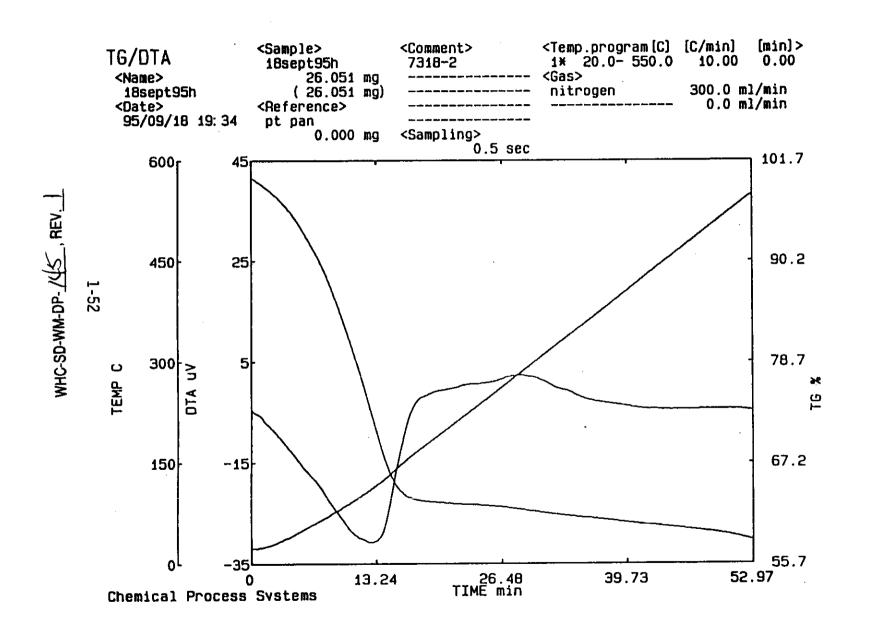


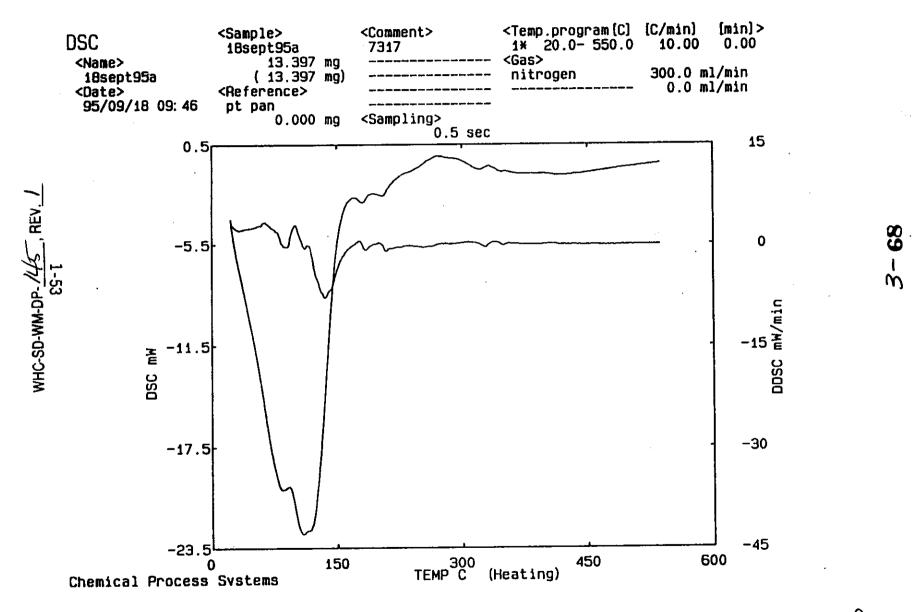




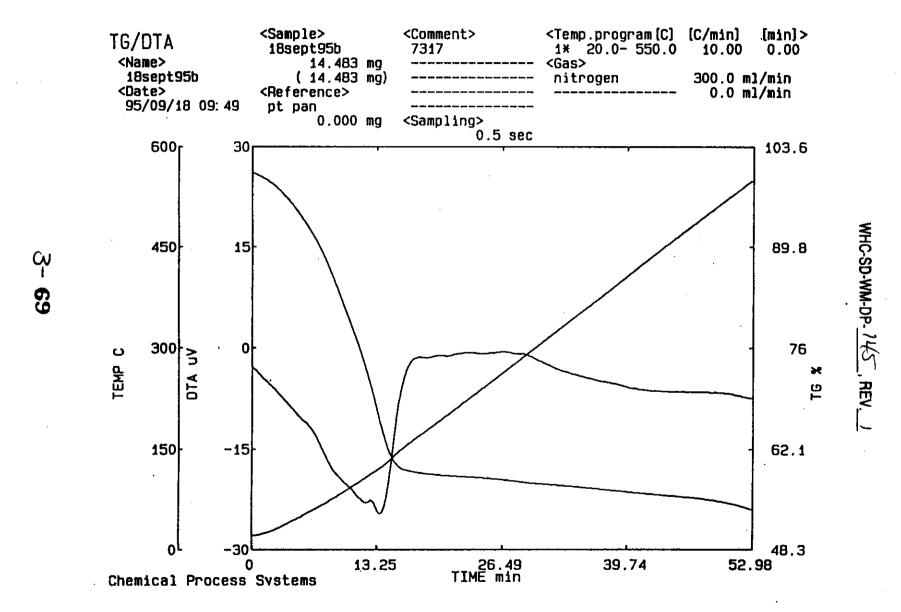


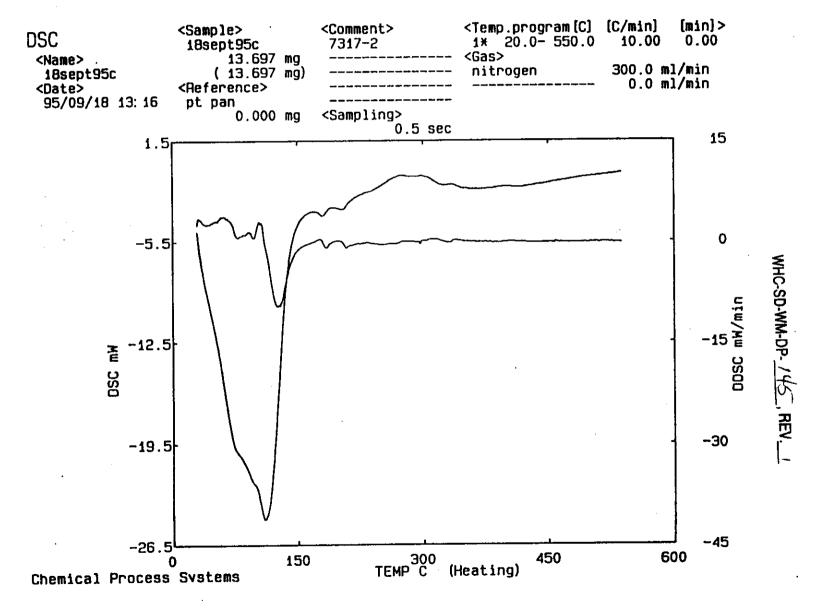
IGEO

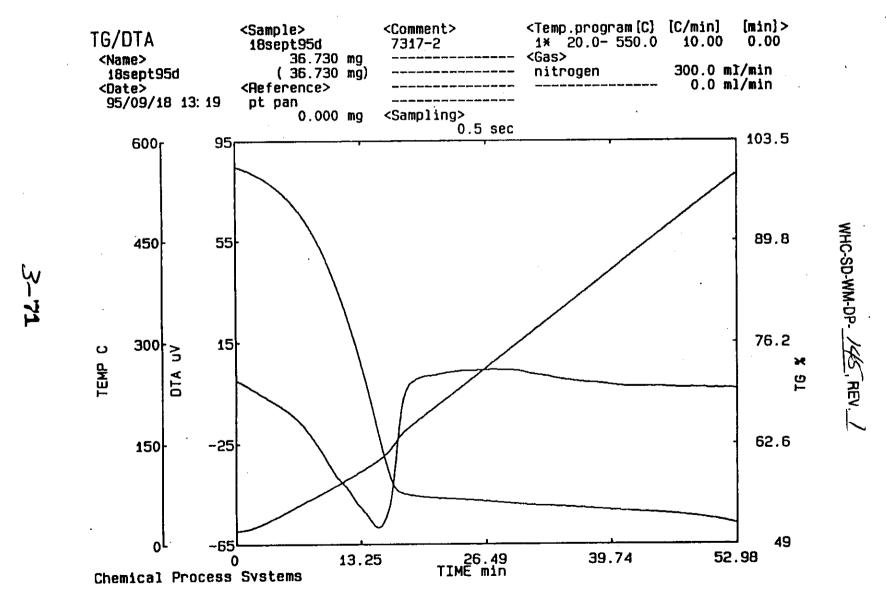




1.OLA






WRA

The density of each sample with the exception of Quarter Segment 2A was measured using a displacement method. Due to the limited sample available for these analyses, only a single measurement was made for each sample. The density of Segment 2A was not measured because sufficient sample was not available to perform an accurate density measurement. The density methods described in PNL technical procedure PNL-ALO-501 could not be followed because of the limited sample available. The results of density measurements are given in Table 1-8.

WHC Sample Number	Segment ID	Density (g/mL)
7313	1	1.59
7314	2 D	1.36
7397	2 Drainable Liquid	1.21
7316	3A	1.57
7398	3 Drainable Liquid	1.21
7322	4A	1.51
7319	4B	1.51
7318	4C	1.53
7317	4 D	1.55

Table 1-8: Tank BY-108, Core 99 Density Results

Experimental Procedure

The density of the solid samples was obtained by a displacement method. The samples were placed in preweighed graduated cylinder with a known volume and mass of mineral oil. After the sample was placed in the mineral oil, the volume and mass of the sample and oil were measured. The density of the sample was then calculated from the sample mass and sample volume obtained from subtracting the mass and volume of the mineral oil from the mass and volume of the sample plus mineral oil. The density of the drainable liquid

was obtained by accurately measuring the mass of the liquid pipetted from a fixed volume pipet.

SECTION 2

INORGANIC CHEMISTRY

THIS PAGE INTENTIONALLY LEFT BLANK.

THIS PAGE INTENTIONALLY LEFT BLANK.

WHC-SD-WM-DP- 145, REV.1 Inductively Coupled Plasma (ICP) Spectrometry Analysis

Sample Preparation and Analysis:

ICP analyses were performed on fusions prepared from homogenized material from Core 99 Segment 1 and Quarter Segments 2A, 2D, 3A, and 4A through 4D. The samples were prepared following procedures PNL-ALO-114 "Solubilization of Metals from Solids Using a Na₂O₂-NaOH Fusion" and PNL-ALO-115 "Solubilization of Metals from Solids Using a KOH-KNO₃ Fusion." Also, ICP analyses were performed on acid digestions of the drainable liquids from Segment 2 and Segment 3. The drainable liquids samples were prepared following procedure PNL-ALO-128 "HNO₃-HCl Acid Extraction of Liquids for Metals Analysis Using a Dry-block Heater." The core material fusions and drainable liquid acid digestions were performed in the Shielded Analytical Laboratory (SAL) with sample solution aliquots being transferred to the Inorganic Analysis Group for ICP analysis. All ICP metals analyses were performed on a Jarrell-Ash ICP 800A system following procedure PNL-ALO-211, "Determination of Elements by Inductively Coupled Argon Plasma Atomic Emission Spectrometry".

Analytical Results:

The KOH-KNO $_3$ fusion analytical results are presented in Tables 2.1a through 2.1e, the Na $_2$ O $_2$ -NaOH fusion results are presented in Tables 2.2a through 2.2c, and the drainable liquid HNO $_3$ -HCl digestion results are presented in Tables 2.3a and 2.3b. In general, the agreement between the results from the two fusion methods is good, considering the very small sample sizes used (i.e., approximately 0.2 grams) and the difficulty in obtaining homogeneous samples. An estimate of the sample detection limit can be obtained from the tables by multiplying the estimated instrument detection limit (IDL) for each analyte by the appropriate sample processing/dilution factor (Dil Fctr). It should be noted that the processing blank has not been subtracted from any of the reported sample results. Based on the crucible material used for each fusion, nickel and potassium results should be obtained from the Na $_2$ O $_2$ -NaOH fusions and the sodium, zirconium and phosphorus results should be obtained from the KOH-KNO $_3$ fusions. Of interest for the core

sludge material is the significant decrease in aluminum and significant increase in calcium, iron, nickel, strontium, and uranium with depth (i.e., from Segment 1 to Segment 4).

Quality Control, Precision, and Accuracy:

The results for both drainable liquids and each segment and quarter segment sample (except Segment 2A for the Na_2O_2 -NaOH fusion) are reported, along with the associated batch processing blanks. Duplicate sample results are reported for both drainable liquids and for all segments and quarter segments prepared by KOH-KNO3 fusions; however, only Segment 1 was prepared and analyzed in duplicate from the Na_2O_2 -NaOH fusion. Pre-digestion blank spike and matrix spike results are included with the drainable liquid reports, and post-fusion blank spike and matrix spike results are included with both the KOH-KNO3 and Na_2O_2 -NaOH fusion reports.

To evaluate the precision of the analytical laboratory sampling, preparation, and analysis, the relative percent difference (RPD) between duplicates is used. The RPD is shown for all samples analyzed in duplicate, and the RPD is flagged with a "*" whenever the RPD has exceeded the 10% criteria required by the TCP and the sample and duplicate results exceed 10 times the instrument detection limit (IDL). As can be seen in the tables, RPDs are very high for many of the segments and quarter segments analyzed. The inconsistency seen in the RPDs is attributed primarily to the difficulties in obtaining fully homogenized samples (either due to the limited sample available or the consistency/texture of the sample material), the complexity and diversity of each of the segments, and the very small sample sizes prepared for analysis.

The accuracy of the ICP results for the analytes of interest is estimated by either the pre/post spike recovery or percent difference (%D) from serial dilution. For serial dilution, the %D is calculated and reported when the initial sample exceeds fifty times the IDL; interferences are suspected if the reported %D exceeds 10%. Except in a very few isolated instances, the %D is well within the TCP 10% criteria. For post spikes of the initial analytical

runs, the TCP requirement of 90-110% matrix spike recovery was not met for all analytes of interest. This is attributed primarily to the sample matrix or the manual dilution operation, since analytical QC samples, such as the continuing calibration verifications, have acceptable results. The KOH-KNO3 and Na2O2-NaOH fusions post spiking reanalyses results using a special mixed spiking solution containing 31 analytes are shown in Tables 2.1e and 2.2c. Except for a few analytes (specifically, A1, Be, Na, T1, and U on the KOH-KNO3 fusions, and A1, As, Ca, Li, Sb, T1, and U on the Na2O2-NaOH fusions), the TCP recovery criteria has been met; the failures are attributed to final analyte concentrations below the method detection limit (i.e., 10 times the IDL) or high analyte concentrations in the samples. In general the recoveries for the post blank spike track the recoveries for the post matrix spike, suggesting that the failures are not matrix related. Typically for those analytes demonstrating spike recoveries exceeding the 90%-110% TCP criteria, recoveries were within 85%-115%.

The processing blank provides information on contamination potentially introduced during the fusion processing. The sodium contamination in the KOH-KNO $_3$ fusion blank is above 10 times the IDL; however, since the sodium concentration is very high, the level of contamination does not impact the reported sodium results. However, iron, manganese, and boron contamination in the KOH-KNO $_3$ fusion blank render these results questionable for all but those samples containing high analyte levels. The calcium and boron contamination is sufficient enough in the Na $_2$ O $_2$ -NaOH fusion blank to render calcium results on Segments 1, 2A, 2D, and 3A and boron results on all segments unusable. The sodium contamination in the HNO $_3$ -HCl acid digestion blank is above 10 times the IDL; however, the level of contamination has no effect on the reported high sodium concentration. Boron is also above 10 times the IDL, rendering the low concentration of boron found in the drainable liquid samples unreliable.

The majority of analytes reported (including the TCP analytes of interest defined in the introduction) are supported by the required verification QC (e.g., verification standards and blanks analyzed every 10 samples). However, some reported analytes (specifically, Ce, Eu, La, Nd, P, Pd, Rh, Sn, Te, Th,

Te, Th, Tl, U, W and Y) have only beginning and closing QC verification, and are presented for information only. In general the analytical results for these analytes are expected to be good; however, the QC performed with the analytical run does not conform to the governing QA plan.

Additional Analyses:

Besides the analyses required by the TCP, core homogenization tests of Segment 1 and Segment 4B and water leach analyses of sludge segments, quarter segments, and drainable liquids were performed. Although no spiking was performed for these analyses, all other processing QC (e.g., duplicates and blanks) and analytical QC (e.g., verification standards) analyses were performed. The reports and data from the ICP analysis for the homogenization test samples and water leach samples can be found in Appendix C.

Tank BY-108, Core 99 Sludge, Segments 1 & 2D, ICP (KOH-KNO₃ Fusions) Table 2-1a:

Project: TWRS
Procedure: PNL-ALO-211 1CP ANALYSIS REPORT -- KOH/Ni Fusions m091395a 09/13/95 Core: 99

	am Logf: Splitf: ICP Dil: il Fctr:	Seg 1 95-07941- H1T-Smp 2.00 1990.0	30.00 9950.2		Seg 1 95-07941- H2T-Dup 2.00 1949.3		H1		Seg 2D 95-07943- H2-Dup 2.00 612.9		95-07941- HCB-81k 2.00 924.2	Seg 1 95-07941- H1T-SmpPS 5.00 4975.1	Post
Est. IDL ug/mL	Analyte	Sample ug/g	Dilution ug/g	1D	Duplicate ug/g	RPD		ample ug/g	Duplicate ug/g	RPD	Batch Blk ug/g	Net PSpk ug/mL	Spk Rec
0.015 0.060 0.080 0.020 0.010 0.005	Ag Al As B Ba Be	ND 135,670 (282) (383) (24) ND	ND 141,075 ND (455) NO NO	4	ND 131,844 (222) (363) ND ND	3	7	ND 0,942 (83) (63) ND ND	CM GM	6	ND (427) ND (163) ND ND	DM 00.0 CM CM	64.51
0.100 0.050 0.015 0.100	Bi Ca Cd Ce	(318) (739) ND ND	ND (647) ND NO (135)		ND (437) ND ND (45)			ND 855 ND ND (27)	CA 888 CA CA (31)	4	ND (80) ND ND (20)	0.24 ND	92.2% 96.3%
0.010 0.020 0.010 0.050 0.100	Co Cr Dy Eu	(58) (146) ND ND ND	(115) KD ND ND NO NO		(152) ND ND ND			177 234 ND ND	173 (23) ND ND	3	СИ СИ СИ	1.41 ND ND ND	93.91
0.020 2.000 0.050 0.030	Fe K La Li	1,488 n/a ND (109)	(1,641) n/a ND ND		971 n/a ND (121)	42	*	710 n/a ND (54)		47	n/a ND (51)	(0.00) s/n cm cm (11.0)	
0.100 0.005 0.030 0.080 0.050	Mg Mn Mo Na Nd	95,300	ND (329) ND 101,561 NO	7	(247) 269 ND 95,728 ND	12 0		(75) 206 CN S9,877	ND 285 ND 146,959	32 5	СА 86 ND 1,890 05)	(0.11) 0.09 ND 13.35) (0.00)	92.21
0.030 0.100 0.060 0.300	Ri P F5	n/a 23,897 (351)	n/a 24,574	3	n/a 29,552 (256) ND	21	•	n/a 2,505 (106 ND	n/a 2,230 (94) ND	12	n/a * ND (86 ND	n/a (0.04) 4.89 ND	
0.300 0.050 0.100 0.500 1.000 0.005 0.500	Rh Sb Si Sn Sr	(129) ND ND (6,917) ND (27)	DN (7,371) מא		ND (106) ND (4,939) ND (22) ND			OM COM DOM OOM (15) OOM	אס (1,150) (23) (13)		ND (48 ND (837 ND ND) ND ND 9.38 ND 0.00	93.8%
0.800 0.800 0.005 0.500 2.000 0.010 0.500	TH T1 11 U V W	ND 358 ND ND (57) NO	NÓ (400) NO NO (105)		ND 181 ND ND (48) ND	65	•	ND (23 ND ND (7 ND	ND (22) ND ND ND ND ND ND ND ND ND		ND 101 ND ND ND	(0.00 (0.00 ND (18.70 (0.00	93.5%
0.010 0.020 0.010	Y Zr Zı		מא ND (218)		ND ND (187))		NO (50 NO	(49)	NC NC (62	תא פא	92.01

Note: 1) Method Detection Limit (MDL) = 10x IDL; "()" results ⊲MDL but ⇒IDL.

2) Above 5 times MDL, results reportable to 2 1/2 significant digits.

3) Blank is reported in ug/g "equivalence" to indicate blank effect on sample results.

4) The process "blank" has not been subtracted from the "Sample & Duplicate" results.

5) Above 5 times the MDL, precision is estimated at +/-10% and accuracy at +/-15%.

6) "ND" = Not Detected: Estimated Sample Detection Limit (ug/g) = (IDL in ug/mL) * (Dil Fctr).

7) If RPD flagged with """, then RPD >20% and sample & duplicate results >MDL.

8) If Percent Difference (%D) >10% and sample results >5x MDL, chemical/physical interferences may exist.

9) Data, including calibration/QC, archived File ICP-325-405-1/95D256a

WHC-SD-WM-DP- /45, REV. / Tank BY-108, Core 99 Sludge, Segments 2A & 3A, ICP (KOH-KNO₃ Fusion) Table 2-1b:

Project: TWRS
Procedure: PML-ALO-211

ICP ANALYSIS REPORT -- KOH/N1 Fusions

m091395b 09/13/95

	Sam Log#: Split#: JCP Dil: Dil Fctr:	Seg 2A 95-07942- H1-Smp 2.00 1736.1	10.00 8680.6		Seg 2A 95-07942- H2-Dup 2.00 1803.4		9	Seg 3A 95-07944- H1-Smp 2.00 1650.2	Seg 3A 95-07944- H2-Dup 2.00 1408.5		9:	5-07942- H3-B1k 2.00 1635.0
Est. JDI ug/mL	Analyte	Sample ug/g	Dilution ug/g	10	Duplicate ug/g	RPD		Sample ug/g	Duplicate ug/g	RPD	В	tch Blk ug/g
0.015	Ag Ai	ND	ND		ND			ND	CM		•	(25)
0.060 0.080		8,327	8,892	7	10,449	23	•	37,342	32,120	15	٠	(316)
0.020	As B	ND 598	ND {666}		ND (140)			ON.	D		_	ND
0.010	Ba	ND	ND		(149) ND			1,088	415	89	•	365
0.005	Be	ND	ND ND		ND CM			ND ND	(16) ND			ND
0.100	Bi	D	ND ND		ND			ND	NO			ND ND
0.050	Ca	1,925	ND		2.164	12	•	1,132	1.035	9		(224)
0.015	Cd	ND	ND		ND	•••		CN	ND	•		KD
0.100	Çe	, ND	ND		, ND			ND	ND			פא
0.010	Ço	(44)	МD		(42)			(63)	(50)			(88)
0.020	Cr.	(72)	CM		(122)			(164)	(178)			(35)
0.010	Çu	ND	СN		327			(100)	(75)			(23)
0.050 0.100	Dy	ND	CA		ДM			ND	СN			CM
0.020	£u Fe	NĐ 5.112	ND 5.464	7	ND		_	ND	כא			ND
Z.000	K	5,112 n/a	3.404 n/a	- /	2,510	68	•	1,608	1,769	10		815
0.050	- La	פא	מא		n/a CN			n/a ND	n/a			n/4
0.030	ίĭ	GN	GN		ND DN			ND CN	ON CN			KD
0.100	Mg	ND.	פא		ND			(199)				CA CA
0.005	Mn	335	(356)		298	12	*	746	535	33	*	677
0.030	Mo	ND	ND		ND			СИ	GN			NO
0.080	Na.	201,659	220,212	9	201,554	0		169,524	181,983	7		4.892
0.050	Nd	(105)	CN		ND			(97)		-		(120)
0.030	Ņi	n/a	n/a		n/a			n/a	n/a			n/a
0.100	P	(709)	GN		(628)			5,405	7,079	27	*	ND
0.050	Pb	(159)	СN		(144)			(167)				(158)
0.300	Pđ Rh	CA CA	פא		ND			, ND	ND			CM
0.050	Sb	ND (91)	DN DN		СИ			KD	ND			ND.
0.100	Se	ND	DM CM		MD DN			ND	ND			(100)
0.500	Si	άΝ	KD KD		(1,072)			ND (1,935)	ND (1,582)			ND
1.000	Š'n	ND	ND		(1,0/2) ND			(1,335) CN	(1,302) ND			GA GA
0.005	Sr	ND	ND		ND			162	201	22		מא מא
0.500	Ťe	ND	ND		ND.			ND	GA			ND
0.800	7h	כא	КD		CN			ND	ND			מא
0.005	71	(22)	СИ		(26)			(38)	(28)			(24)
0.500	11	CN	כא		`ND			ND	ND			ND
2.000	Ų	ND	מא		* ND			ND.	ND			ND
0.010	Ä	ND	CM		КD			(22)	(22)			(18)
0.500	W Y	GN	ND		MD			ND	ND			ND
0.010 0.020		CN	ND 		CM			GN	ND			ND
0.020	Zn 2-	(71)	ND NO		(250)			(103)	(98)			(75)
0.010	Zr	ND	СМ		ND			' ND	ND			ND

Note: 1 Method Detection Limit (MDL) = 10x 1DL; "()" results <MDL but =>1DL.

2 Above 5 times MDL, results reportable to 2 1/2 significant digits.

3 Blank is reported in ug/g "equivalence" to indicate blank effect on sample results.

4 The process "blank" has not been subtracted from the "Sample & Duplicate" results.

5 Above 5 times the MDL, precision is estimated at +/-101 and accuracy at +/-151.

6 "ND" = Not Detected; Estimated Sample Detection Limit (ug/g) = (1DL in ug/mL) * (Dil Fctr).

7 If RPD flagged with "*", then RPD >201 and sample & duplicate results >MDL.

8 If Percent Difference (1D) >101 and sample >5x MDL, chemical/physical interferences may exist.

9 Data, including calibration/QC, archived File ICP-325-405-1/95D256a

Tank BY-108, Core 99 Sludge, Segments 4A & 4C, ICP (KOH-KNO3 Fusion) Table 2-1c:

Project: TWRS Procedure: PNL-ALO-211

ICP ANALYSIS REPORT -- KOH/N1 Fusions

#091395c 09/13/95

	Sam Log#: Split#: ICP Dil: Dil Fctr:	Seg 4A 95-07945- H1-Smp 2.00 1857.0	10.00 9285.1		Seg 4A 95-07945- H2-Dup 2.00 1706.5		Seg 4C 95-07947- N1-Smp 2.00 1836.5	Seg 4C 95-07947- H2-Dup 2.00 1384.1		95-07945- H3-B1k 2.00 1672.6		
Est. 101 ug/mL	Analyte	Sample ug/g	Dilution ug/g	10	Duplicate ug/g	RPD	Sample ug/g	Duplicate ug/g	RPD	Batch Blk ug/g	Met PSpk ug/mL	Post Spk Rec
0.015 0.060 0.080	eA Al As	(32) 14,622 ND	ND 15,819 CM	8	(33) 14,338 ND	2	(39) 7,155 ND	7,158 (115)	0	ND (354) ND	ND 9.05 ND	90.51
0.020 0.010 0.005	B Ba Be	(293) 257 ND	(354) (291) ND		390 262 ND	2	828 (87) ND	543	42		0.00 0.00 ND	
0.100 0.050 0.015	Bi Ca Cd	(1,279) 11,276 ND	(1.350) 11,872 ND	5	(1,369) 11,406 ND	1	(878) 15,618 ND	(926) 15,516 ND	1	ND (149) ND	(0.01)	91.4% 98.5%
0.100 0.010 0.020	Ce Co Cr	ND (81) 613	ИО ИО (661)		(214) (71) 545	12		(74) (79)		หอ (55) หอ	ND (0.00) 1.41	94.3%
0.010 0.050 0.100	Cu Dy Eu	(128) ND ND	(157) ND ND		CN CN CN	_	435 ND ND	269 ND ND	47	ND ND	ND ND	
0.020 2.000 0.050 0.030	Fe K La Li	19,490 n/a ND ND	21,229 n/a ND ND	. 9	19,044 n/a ND	2	32,264 n/a ND	35,029 a\n CM	8	738 n/a ND	(0.13) n/a ND	
0.100 0.005 0.030	Mg Ma Mo	(1.293) 1.024 NO	(1.477) 1.105 ND	8	ND (1,143) 467 ND	75	00 (1,141) 1,069		10	ND ND 384 ND	СИ (0.09) 0.09 СИ	£8.85
0.080 0.050 0.030	Na Nd Ni	135,458 (143) n/a	154,142 ND n/a	14	121,043 (156) n/a	11		114,902	3	4 494 (111) n/a	13.25	
0.100 0.060 0.300	P Pb Pd	14,255 (1,075) ND	15,057 (1,212) ND	6	12,926 1,156 ND	10	24,626 (1,047) ND	24,629	0	้หอ (152) หD	(0.07) 4.92 KD	98.41
0.300 0.050 0.100	Rh S5 Se	ОИ СИ СИ	СИ СИ СИ		ND (106) ND		NO (107) ND	CH		ND ND ND	ND ND ND	
0.500 1.000 0.005	<u>S</u> i Sn Sr	(2,929) ND 12,458	กปี กอ 13.754	10	(4,696) NO 12,751	2	(2,175) ND 1,084		1	DA CA CA	9.66 ND (0.09)	96.61
0.500 0.800 0.005	Te Th Ti	ND ND (64)	ND ND (73)		ND ND (56)		ND ND (58)			ND ND (22)		
0.500 2.000 0.010 0.500	11 V W	(30.957) (23) ND	ND (34.843) ND ND		ND (31,604) (27) ND		40,875 (28) ND	44,374	8	ND ND ND	ND 18.37 ND	91.85
0.010 0.020 0.010	Ÿ Zn Zr	ND (297) ND	ND (305) ND		ND (228) ND		(21) (354) ND) (21)		. ND . ND (129) ND	ND ND 0.01 0.46	91.92

Note: 1) 2)

Method Detecion Limit (MDL) = 10x IDL; "()" results ←MDL but ⇒>IDL.

Above 5 times MDL, results reportable to 2 1/2 significant digits.

Blank is reported in ug/g "equivalence" to indicate blank effect on sample results.

The process "blank" has not been subtracted from the "Sample & Duplicate" results.

Above 5 times the MDL, precision is estimated at +/-10x and accuracy at +/-15x.

"ND" = Not Detected; Estimated Sample Detection Limit (ug/g) = (IDL in ug/mL) * (Dil Fctr).

If RPD flagged with "", then RPD >20x and sample & duplicate results >MDL.

If Percent Difference (ID) >10x and sample results >5x MDL, chemical/physical interferences may exist.

Data, including calibration/QC, archived File 1CP-325-405-1/95D256a

Tank BY-108, Core 99 Sludge, Segments 4B & 4D, ICP (KOH-KNO₃ Fusions) Table 2-1d:

Project: TWRS
Procedure: PNL-ALO-211

ICP ANALYSIS REPORT -- KOH/N1 Fusions

m091395d 09/13/95

÷	Sam Log#: Split#: 1CP Dil: Dil Fctr:	Seg 4B 95-07946- H1T-Smp 2.00 1996.0	10.00 9980.0		Seg 48 95-07946- K2T-Dup 2.00 2016.1			Seg 4D 5-07948- H1-Smp 2.00 2024.3	Seg 4D 95-07948- H2-Dup 2.00 2283.1		95-07946- HCB-B1k 2.00 2073.6
Est. IDI ug/mL		Sample ug/g	Dilution ug/g	:0	Duplicate ug/g	RPD		Sample ug/g	Duplicate ug/g	RPD	Batch Blk ug/g
0.015 0.060 0.080 0.020 0.010 0.005	Agi As B Ba Be	460	ND 13.685 ND (532) (666) ND	5	(32) 10,380 (214) 405 445 ND	23 13 33		(33) 8,608 ND 1,119 (117)	8,725 ND (456)	1	(42) (1,116) (222) (385) ND ND
0.100 0.050 0.015 0.100 0.010 0.020	B1 Ca Cd Ce Co	3,245 11,867 (57) ND (93)	(3.512) 12.099 ND ND (140) (578)	2	2,50Z 8,471 (76) ND (89) (398)	26 33		(1,123) 7,973 ND ND (94) (103)	(1,174) 8,038 ND ND (129)	1	(255) (260) ND (255) (91) (77)
0.010 0.050 0.100 0.020 2.000 0.050	Cu Dy Eu Fe K La	(63) ND NO 29,045 n/a	(122) NO NO 30,298 n/a ND	4	(45) ND ND 21,333 n/a ND	31	•	247 ND ND 44.493 n/a	(169) ND ND 44,702 n/a ND	0	(66) ND ND (397) n/a ND
0.030 0.100 0.005 0.030 0.080 0.050	Li Mg Mn Mo Ka Nd	(127) (1,511) 803 ND 103,437	ND (1.798) 836 ND 113,594 NO	4	(171) (1,199) 644 ND -114,857	22 10	•	(1,233) 1,234 ND 117,626 (171)	ND (1,209) 1,554 ND 117,166	23 0	ND (224)
0.030 0.100 0.060 0.300 0.300	NÎ P Pb Fd Rh	n/a 20,096 (1,141) ND ND	n/a 20,254 (1,454) ND ND	1	(176) n/a 28,137 (902) ND ND	33	•	n/a 26,870 1,544 ND ND	n/a 27,825 1,628 ND ND	3 5	(364) (332) (926) ND
0.050 0.100 0.500 1.000 0.005 0.500	Sb Se Si Sn Sr Te	00 (4,194) ND 27,379	ND ND ND ND 28,536	4	(148) NO (4,532) ND 18,725 ND	38	•	(102) ND (2,567) ND 1,452	ND (2,746) ND 1,471 ND	1	(186) ND ND ND (18) ND
0.800 0.005 0.500 2.000 0.010 0.500 0.010	Th T1 T1 U V W Y Zn	478 ND 61,811 (25) ND ND	513 513 ND (69,317) ND ND ND		ND 412 ND 46,561 (29) ND ND	15 28		ND (76) ND 51,491 (26) ND (24)	51,633 (32) ND (25)	0	22 ND ND ND (35) ND ND
0.010	21		ND		ИĎ			ND	ND		(32)

Note: 1) Method Detection Limit (MDL) = 10x 1DL; "()" results <MDL but =>1DL.

2) Above 5 times MDL, results reportable to 2 1/2 significant digits.

3) Blank is reported in ug/g "equivalence" to indicate blank effect on sample results.

4) The process "blank" has not been subtracted from the "Sample & Duplicate" results.

5) Above 5 times the MDL, precision is estimated at +/-10x and accuracy at +/-15x.

6) "MO" = Not Detected; Estimated Sample Detection Limit (ug/g) = (IDL in ug/mL) * (Dil Fctr).

7) If RPD flagged with "+", then RPD >20x and sample & duplicate results >MDL.

8) If Percent Difference (ID) >10x and sample results >5x MDL, chemical/physical interferences may exist.

9) Data, including calibration/QC, archived file 1CP-325-405-1/95D256a

WHC-SD-WM-DP-___/4/5__, REV.____/

Tank BY-108, Core 99 Sludge, Post Spike Reanalysis, ICP (KOH-KNO₃ Fusion) Table 2-1e:

Project: Procedure: TWRS PNL-ALO-211

ICP ANALYSIS REPORT -- KOH/Ni Fusions

File: m091995b Analyzed: 09/19/95

Core 99
Post Spike Reruns (Special)

Set Thi	Post Spi	Sam Logf: Splitf: JCP Dil: Dil Fctr: Run Time:	Seg 1 95-07941- H1T-Smp 5.00 4975.1 13:46	Seg 1 95-07941- H1T-Smp-PS 5.00 4975.1 13:50	Post Spk Recovery 123.01 90.91 113.21 99.71 99.71 96.41 96.91 99.51 100.11 98.42 97.91 98.11 101.12 88.81 103.01 106.42 103.11 95.42 95.31	95-07941- HCB-Smp	81ank Spk 95-07941- HCB-Smp-PS 5.00 4975.1 13:43	Bast Cab
ug/mL	ug/mL	Analyte	ug/g	ug/mL	Recovery	ug/g	ug/mL	Recovery
0.015 0.060 0.080	0.50 75.00 2.50	pA IA 2A	ND 144,823 ND	(0.62) 68.17 (2.83)	123.03 90.93 113.23	ND (1,119) ND	(0.60) 69.05 (2.69)	120.3% 92.1% 107.7%
0.020	2.00	В	(442)	1.67	93.71	(405)	1.84	92.01
0.010	0.50	Ba Re	קא הא	(0.50)	99.7%	ND ND	(0.47)	94.31
0.100	25.00	Ēi	ND.	24.11	96.41	ND	23.23	92.95
0.050	50.00	Ca	(749)	48.43	96.91	(363)	46.80	93.65
0.015	1.75	Çd	ND.	1.74	99.51	ND	1.73	98.71
0.100		Ce	ND	KO	144 15	ND	ND	,
0.010	1.00	(-	(66)	1.00	100.1%	(55)	0.98	98.41
0.020	1.00	Cu	(133)	0.98	97.94	מא	0.10	90.34
0.050		Dy	CN	CA	27	ND	CN	,
0.100		Eu	СИ	CA		ND	CN	
0.020	20.00	Fe	1,606	19.61	98.11	(674)	19.13	95.7%
2.000	125.00	Ķ	n/a	n/a	n/a	n/a	n/a	n/a
0.050	7 00	La	NO.	ND CA		ND	1 00	
0.030	2.00	L1	/621\	1.87	93.32	UN	1.82	91.12
0.100	1.00	rig Mo	120	0 68 76.61	98 12	(204)	20.23 n 68	100.14
0.030	1.00	Ma	NO.	(1.03)	101.22	ND ND	(1.01)	101.12
0.080	105.ES	Na	107,789	94.87	88.81	4.976	95.32	89.2%
0.050		Nd	CN	CN		GN	(0.27)	
0.030	26.00	N1	n/a	n/z	n/a	n/a	n/a	n/a
0.100	-2 *0	P	24,798	(0.29)		כא	CN	
0.050	27.50	5 P	(448)	28.33	103.0%	(346)	27.68	100.7%
0.300		70 8h	תה מא	בה הא		טא טא	הא הא	
0.050	2.50	55	(259)	2.66	106.43	מא	2.73	109.41
0.100	2.50	Se	'מא	(2.5E)	103.1%	ND	(2.57)	102.7%
0.500	70.00	Si	(7,343)	66.81	95.42	ND	67.10	95.9%
1.000		Şn	ND.	КD		МD	פא	
0.005	0.50	Sr	(31)	0.48	95.31	ND ND	0.47	94.2%
0.500		1 C	שא	77		NU ND	מא	
0.005	1.00	Ti	350	0.86	95 64	(246)	n nea	93 75
0.500	2.50	ήi	מא	(2.93)	117.02	ND	(2.61)	104.3%
2.000	100.00	Ú	ND	(91.13)	91.1:	ND	(88.99)	29.0%
0.010	1.00	V	(69)	0.95	95.2%	ND	0.96	95.1%
0.500		Ä	ND	CN		ND	ND	
0.010		<u>Y</u> _	ND (100)	CA	100 00	GM	KD	***
0.020	4.50	Zr	(185)	4.31	100.2% 95.6%	(150)) 4.18	92.81

Note: 1) Method Detection Limit (MDL) = 10x IDL; "{ }" results <MDL but =>IDL.

2) Above 5 times MDL, results reportable to 2 1/2 significant digits.

3) Blank is reported in ug/g "equivalence" to indicate blank effect on sample results.

4) The process "blank" has not been subtracted from the "Sample & Duplicate" results.

5) Above 5 times the MDL, precision is estimated at +/-10% and accuracy at +/-15%.

6) "ND" = Not Detected; Estimated Sample Detection Limit (ug/g) = (IDL in ug/mL) * (Dil Fctr).

⁷⁾ Data, including calibration/QC, archived File 1CP-325-405-1/95D262a

Tank BY-108, Core 99 Sludge, Segments 1, 2D, & 3A, ICP (Na₂O₂-NaOH Fusion) Table 2-2a:

Project: TWRS Procedure: PNL-ALO-211

ICP ANALYSIS REPORT -- Ma202/2r Fusions

File: m091295c Analyzed: 09/12/95

	Sam Logf: Splitf: ICP Dil: Dil Fetr: Run Time:	M1-Smp 2.00 1511.7	10.00 7558.6 15:35		Seg 1 95-07941- NZ-Dup 2.00 2114.2 15:59			Seg 2D 95-07943- N1-Smp 2.00 886.5 16:10	Seg 3A 95-07944- X1-Smp 2.00 1506.0 17:10	95-07941- M3-81k Z.00 1366.8 15:30	Seg 1 95-07941- N1-Smp-PS 5.00 3779.3 15:45	
Est. IDL ug/mL	Analyte	Sample ug/g	Dilution ug/g	: D	Duplicate ug/g	RPD		Sample ug/g	ug/g	ug/g	ug/mL	Post Spk Recovery
0.015 0.060 0.080 0.020 0.010	As B Ba	ND 104,424 (167) 694 (15)	ND 115.669 ND (779) ND ND ND (3.150)	11	ND 135,410 (256) 1,038 (23)	26 40		(112) (147) (13)	25,702 ND 635 (17)	ND 417 NO	(0.22) 0.03 ND	66.0%
0.005 0.100 0.050 0.015 0.100	Be Bi Ca Cd Ce	ND	ND		ND	26	•	ND ND	ND 3.257 ND ND	ND ND 2,665 ND ND	ND ND 20.45 1.09 (0.59) (0.05)	81.81 87.51
0.010 0.020 0.010 0.050 0.100	Cr Cu Dy Eu	(127) (90) ND	ND (83) ND		(35) (169) (43) ND ND	••		(19) (176) (20) ND ND 544	(154) (32) ND ND	ND (35) (16) ND ND	6.30 (0.00) ND ND	54.0I
0.020 2.000 0.050 0.030 0.100	K La Li Mg	ND (52) (186)	כא פא		1,411 (8,232) ND (80) (313) (29)			ND (60) (126)) (3,879) ND) (48)) ND	(195) ND ND ND ND	0.03 (87.97) ND ND (0.79)	ı
0.005 0.080 0.050 0.030 0.100	Mo Na Nd Ni	ND' n/a (125) 473	n/a NO		7237 778 (232) 674 (715)	35		(13) NO n/a (106) 532 (233)	π/a (127) 836	ND n/a (88) (314) ND	ND n/a (0.32) 21.52	86.1%
0.060 0.300 0.300 0.050) P5) Pd) Rh) -S5	(232) KD KD KD	מא מא מא מא מא		(345) ND ND ND (111)			(177) CM ND (58)) (177) ND ND ND	0.53) 0.7 0.7 0.7 0.7 0.7	22.63 DA DA DA	90.51
0.500 1.000 0.005 0.500) Si) Sm ; Sr) Te	(2,650) NO (58)	כא מא		(4,150) ND (70) ND ND) (1,086) 07 310 08	DA DA	41.99 KD (0.00) KD)
0.005 0.500 2.000 0.010 0.500 0.010	5 Ti 0 Ti 0 V 0 W	(45) ND ND (57) ND ND	(56) KD ND (79) ND ND		(70) ND ND (55) ND ND (50)			(22 NO ND (15 NO ND (32) (20) ND ND (19) ND ND	(10) ND ND ND ND ND	(0.03 ND R5.86 (85.86 (0.05 ND) 85.9%)
0.010					n/a			n/a		n/a		

Note: 1) Method Detection Limit (MDL) = 10x 1DL; "()" results <MDL but =>1DL.

2) Above 5 times MDL, results reportable to 2 1/2 significant digits.

3) Blank is reported in ug/g "equivalence" to indicate blank effect on sample results.

4) The process "blank" has not been subtracted from the "Sample & Duplicate" results.

5) Above 5 times the MDL, precision is estimated at +/-10% and accuracy at +/-15%.

6) "ND" = Not Detected; Estimated Sample Detection Limit (ug/g) = (1DL in ug/mL) * (Dil Fctr).

7) If RPD flagged with "=", then RPD >20% and sample & duplicate results >MDL.

8) If Percent Difference (1D) >10% and sample results >5% MDL, chemical/physical interferences may exist.

9) Data, including calibration/QC, archived File 1CP-325-405-1/95D25Sa

Tank BY-108, Core 99 Sludge, Segments 4A, 4B, 4C, & 4D, ICP (Na₂O₂-NaOH Table 2-2b: Fusion)

Project: TWRS Procedure: PNL-ALO-211

ICP ANALYSIS REPORT -- Na202/Zr Fusions

File: m091295d Analyzed: 09/12/95

	Sam Logf: Splitf: JCP Dil: Dil Fctr: Run Time:	Seg 4A 95-07945- N1-Smp . 2.00 1926.8 . 17:19	10.00 9633.9 17:15		Seg 48 95-07946- N1-Smp 2:00 1857:0 17:30	Seg 4C 95-07947- N1-Smp 2.00 1912.0 17:39	Seg 4D 95-07948- N1-Smp 2.00 1816.5 18:02	95-07941- N3-B1k 2.00 1877.1 15:30	Seg 4A 95-07945- 11-Smp-PS 5.00 4817.0 17:22	
Est. IDL ug/mL	Analyte	Sample ug/g	Dilution ug/g	1 D	Sample ug/g	Sample ug/g	Sample ug/g	Batch Blk ug/g	Net PSpk ug/mL	Post Spk Recovery
0.015 0.060 0.080 0.020 0.010 0.005	Ag Al As B Ba	ND 15,478 ND 404 285	ND 16,543 ND (475) (321)	7	ND 11,193 ND 433 556 ND	ND 7,430 RD (254) (99) ND	ND 8,166 ND 397 (115) NO	## Batch Blk ug/g ## 169) ND 169) ND 572 ND ND ND ND ND ND ND N	ND 45.50 ND (0.03) (0.02) ND	91.01
0.100 0.050 0.015	Bi Ca Cd	(1.378) 16.028 KD	(1,428) 16,885 ND	5	2,823 15,459 NO	(933) 20,636 ND	(1,075) 11,455 ND	ND 3,660 ND	(0.10) 23.71 1.20	94.81 96.21
0.100 0.010 0.020 0.010	Ce Co Cr	ND (41) 619 (36)	ND ND (664) ND		ND (38) 479 (31)	ND (34) (97) (66) NO	ND (37) (109) (105)	ND ND (48) (22)	ND (0.02) 7.22 ND	96.21
0.050 0.100 0.020 2.000 0.050) Eu) Fe) K	ND ND 20,151 (4,226) ND	ND 22,079 ND ND ND	10	ND 27,212 (4,904) ND	ND 34,805 (4,549 ND	ND 41.981 (4.777) ND	ND (268) ND ND	1.15 (87.50) NO	£7.5 %
0.030 0.100 0.005 0.030) E1	11,480) 1 (1,480) 1 300 1 NO	CA (1,664) (330) CA		(1,459) 328 NO	CN CBS,1) 366 CN	ND (1.374) 498 ND	ОМ ОМ ОМ	0.69) 0.49 0.49	97.8%
0.080 0.050 0.030 0.100) N:) N:	1 (145) 1 (145) 1 14,673	ก/ ล N5 16,121	10	(161) 16,741 3,840	(174 6,710 (1,605) (199) 7.209) (1.437)	(120) (432) ND	ND 25.37 (0.25	101.5%
0.060 0.300 0.300) F1) F1) R1	2 (1,154) 4 NO 1 NO	(1,376) ND ND		(995) CM CM	(1,144 ND NO) 2,856 ND ND	(117) ND ND	25.11 ND ND	100.5%
0.050 0.100 0.500 1.000	0 Si 0 Si 0 Si	6 NO 6 NO 6 (2,720) 6 NO	ОМ ОМ ОМ СМ		ND ND (2,287) ND	1,554 (1,554	ND) (1,784) ND	RD RD RD ND	00/ 06.84 00/	97.3%
0.005 0.500 0.800 0.000	5 5 0 T 0 T	r 13,885 e ND h ND i (41)	15,346 CN CN (50)	11	. 25,031 ND ND (46)	1,260 ND ND (34	1,468 ND ND (40)	מא מא (13	ND ND (0.01)
0.50 2.00 0.01 0.50	0 T 0 U 0 V	נא [†] (אַל (33,219) הא מא מא	ND (38,672) ND ND		54,717 (20) ND	46.937 46.937 NO NO	50,669 (21)	ND ND NO NO	97 . 64 97 . 64 ND ND	97.61
0.01 0.02 0.01	0 Y 0 Z 0 Z	ND n (235) r n/a	ND (243) n/a		(20) (150) n/a	(24) n/s	(25) (303) (303)	ON ON n/a	0.01 n/a	n/a

Note: 1) Method Detecion Limit (MDL) = 10x 1DL; "()" results <MDL but =>1DL.

2) Above 5 times MDL, results reportable to 2 1/2 significant digits.

3) Blank is reported in ug/g "equivalence" to indicate blank effect on sample results.

4) The process "blank" has not been subtracted from the "Sample & Duplicate" results.

5) Above 5 times the MDL, precision is estimated at +/-10% and accuracy at +/-15%.

6) "ND" = Not Detected: Estimated Sample Detection Limit (ug/g) = (10L in ug/mL) * (Dil Fctr).

7) If RPD flagged with """, then RPD >20% and sample & duplicate results >MDL.

8) If Percent Difference (1D) >10% and sample results >5x MDL, chemical/physical interferences may exist.

9) Data, including calibration/QC, archived File ICP-325-405-1/95D255a

Tank BY-108, Core 99 Sludge, Post Spike Reanalysis, ICP (Na₂O₂-NaOH Fusion) Table 2-2c:

Project: Procedure:

TWRS PNL-ALO-211 ICP AMALYSIS REPORT -- Ma202/Zr Fusions

File: m091995a Analyzed: 09/19/95

Core 99 Post Spike Reruns (Special)

	Basa Fal	ICP Dil: Dil Fetr: Bun Time:	N1-Smp 5.00 3779.3	N1-Smp-PS 5.00 3779.3		Blank B 95-07941- 9 N3-Blk N 5.00 3779.3 14:08	5.00 3779.3 14:12	
Est. IDL ug/mL	Conc ug/mL	Analyte	Sample ug/g	Net PSpk ug/mL	Post Spk Recovery 121.11 86.01 111.81 92.41 96.61 95.01 94.11 98.02 102.91 96.37 95.61 95.91 98.11 E9.31 107.41 96.21 100.11 n/a 98.51 101.81 111.61 99.91 94.77 92.71 94.31 115.31 88.91 93.51	Sample ug/g	Net PSpk ug/mL	Post Spk Recovery
0.015	0.50	kg.	NO	(0.61)	121.15	(64)	(0.58)	115.52
0.060 0.080	75.00	KI.	122,32/	04.48 (2.80)	86.01 111 RT	(351)	/1.44 /2.51)	95.33 112 35
0.020	2.50	Ę,	836	1 55	92 42	(516)	1.90	95 12
0.010	0.50	5a	CM	(0.48)	96.67	ND.	(0.48)	96.41
0.005	0.10	Бe	ND.	(0.09)	90.2%	СN	(0.09)	90.3%
0.100	25.00	Bi	ND	23.74	95.0%	СИ	24.30	97.21
0.050	50.00	Ça	4,222	47.04	94.1%	7,612	43.51	87.01
0.015	1.75	Cq	ND	1.72	98.01	ND	1.78	101.51
0.100	1 00	(e	NO NO	1 02	102.04	טא מא	1 05	105.05
0.010 0.020	1.00	Co	(160)	1.U3 8 10	06 35	מא	R 70	103.01
0.020	1 00	Cu	(130)	0.46	95.62	(60)	0.98	97.91
0.050		Ďν	`GA	ND	*****	ČN.	ďЙ	*****
0.100		Eu	CN	СИ		СN	ND	
0.020	20.00	Fe	1,209	19.18	95.9%	(262)	19.53	97.7%
2.000	125.00	κ	CM	122.60	98.11	מא	125.64	100.5%
0.050		La	ND	NO.		פא	, ND	
0.030	2.00	Li	CM	1.79	E9.32	KD	1.77	88.72
0.100	25.00	Mg	(30)	26.65	107.42	כא מא	0.00	109.25
0.005 0.030	1.00	ra Un	. (30) MO	(1.00)	100.24	מא	(1.01)	101.01
0.050	106 65	n.o Na	r/3	2/3	.00.12 n/a	6/a	n/a	n/a
0.050	100.00	Nd	ND	(0.36)	, •	(208)	(0.07)	=
0.030	26.00	Ni.	(575)	25.60	98.55	(410)	25.97	99.9%
0.100		P	4,074	0.11		ัหวั	ND.	
0.060	27.50	· F5	(273)	28.01	101.81	פא	28.78	104.7%
0.300		Fd	CN CN	ND.		ND	ND	
0.300		Rh.	כא	KO		ND ND	GN .	111 /#
0.050	2.50	33	CN	2.79	111.65	NO.	(2.53)	111.44
0.100 0.500	2.50)	יטא לא מלגו	(2.50)	99.94 64.75	תא מא	68 12	07 35
1.000	70.00	, ,,	(3,040)	, 50.27 SD	34.75	CA	ND.	*****
0.005	0.50	ζ,	(69)	0.46	92.7%	(54)	0.47	93.51
0.500	• • • • • • • • • • • • • • • • • • • •	īe	ND.	ND.	••••	`GN	КD	
0.800		Th	G/A	KD.		ND	CM	
0.005	1.00) Ti	(53)	0.94	94.31	מא	0.98	98.21
0.500	2.50	1 11	GN	(2.58)	115.32	ND	(2.64)	105.6%
2.000	100.00	ָטַ טַּ	פא	(88.92)	88.91	ND ND	(8/.75)	87.8%
0.010	1.00	· •	(65)	0.94	95.52	NO NO	85.U	30.17
0.500 0.010		Ä	טא רע	75 UN		#D	טא כא	
0.010	1 00	, 7,	, KD	1 10	110.05	(29)	0.97	97.1%
0.010	4.50	21	n/a	n/a	n/a	n/a	n/a	n/a

Note: 1) 2) 3) 4)

Method Detection Limit (MDL) = 10x 1DL; "()" results <MDL but =>1DL.

Above 5 times MDL, results reportable to 2 1/2 significant digits.

Blank is reported in ug/g "equivalence" to indicate blank effect on sample results.

The process "blank" has not been subtracted from the "Sample & Duplicate" results.

Above 5 times the MDL, precision is estimated at +/-10% and accuracy at +/-15%.

"ND" = Not Detected; Estimated Sample Detection Limit (ug/g) = (1DL in ug/mL) * (Dil Fctr).

File ICP-325-405-1/950262a 7) Data, including calibration/QC, archived

Tank BY-108, Core 99 Drainable Liquid, Segment 2, ICP (Acid Digestion) Table 2-3a:

Project: TWRS
Procedure: PNL-ALO-211
MATE: JA 1CP W873520

ICP ANALYSIS REPORT
** Sample Results -- Acid Digestion **

Core 99 Drainable Liquids

Analyze Date: 09/12/95 File: m091295a Report Page 1 of 2

Samp Log∮:	Seg 2 95-07932- Al Sam	95-07932- Al SamDil	95	Seg 2 -07932- A2 Dup	95-07932- A2 DupDil		95-07932- A3 Blank		
Dil Fctr: ICP Dil:	125.00 10.00	625.00 50.00 Sample		125.00 10.00	625.00 50.00	>l	12.50 1.00 <blank> </blank>	**Estimat IDL	ed** HDL
Analyte	ug/mL	ug/ml	1D 1	ug/mL	ug/mL	2D	ug/mL	ug/mL	ug/mL
Analyte Ag Al As Ba Ba Ba Bc Ccc Cr Cuy Eu Fe Lai Mgn Moa Nai P PdRhb Sce Sin Te Th	ug/mL MD 35.454 (30) 433 ND ND ND ND ND 118 2.656 ND ND ND 109 280 ND 109 280 ND 100 ND 1	99/mL ND 36,139 ND (43) ND ND ND ND (123) (2,716) ND ND ND ND ND ND ND ND ND ND	21	ug/mL ND	ug/mL	17 02 02 81 31	<	0.015 0.060 0.080 0.020 0.010 0.050 0.015 0.100 0.020 0.010 0.050 0.100 0.020 0.010 0.050 0.030 0.080	ug/mL 0.1500 0.6000 0.5000 0.1000 0.5000 1.0000 0.1500 1.0000 0.1500 1.0000 0.1500 0.1000 0.2000 0.1000 0.5000 0.1000 0.5000
†1 U V	(76 ND ND	ND CN		(75 NO NO	ND ND		ND ND ND	0.010	5.0000 20.0000 0.1000
W Y Zn Zr		ND ND		NE NE (7 NE) ND		ND ND ND ND	0.500 0.010 0.020 0.010	5.0000 0.1000 0.2000 0.1000

Note: 1) Above 5 times MDL, results reportable to 2 1/2 significant digits. "()" results <MDL but =>IDL.

2) Blank is reported adjusted for the an "average sample volume".

3) The process "blank" has not been subtracted from the "Sample & Duplicate" results.

4) Above 5 times the MDL, precision is estimated at +/-10% and accuracy at +/-15%.

5) "ND" = Not Detected; Estimated Sample Detection Limit (ug/mL) = (IDL in ug/mL) * (Dil Fctr).

6) If Percent Difference (%D) >10% and sample results >5% MDL, chemical/physical interferences may exist.

7) ">MDL" indicates analyte found in process blank above the MDL.

⁸⁾ Data, including calibration/QC, archived File 1CP-325-405-1/95D255a

Tank BY-108, Core 99 Drainable Liquid, Segment 2, ICP (Acid Digestion) - cont. Table 2-3a:

Project: TWRS
Procedure: PNL-ALO-211
MATE: JA ICP WB73520

ICP ANALYSIS REPORT

09/12/95 : Analyzed m091295a : File Report Page 2 of 2

				Fctr' >> ctr >> il >>>	Seg 2 95-07932- A4 Smp+Spk 100.00 125.00 10.00		,	25-07932- 15 Blk Spk 100.00				Post Spk		
Analyte	Average A1 & A2 ug/mL	20% RPD Flg	PreSpk	Spk Conc in Sam/Bli		Rec	Spk	Net Blk Spk Cntrl		101 Spk	PostSpk	Post Spike ug/mL	Rec	Spk F)g
Ag Al	35,192	1%	1000	10.000	12.93	129.31	N	8.619	86.21	N				
As B	42	61												
Ba Be														
Bí Ca Cd			500 25	5.000 0.250		118.51 95.41		4.236 0.207						
Ce Co	•••		23	0.230	0.24	33.44		0.207	02.04					
Cr Cu Dy Eu	279	11	150	1.500	1.38	92.01		1.314	87.61					
Eu Fe K La	118 2,635	11 21	2000	20.000	20.69	103.4%		16.984	84.91					
Li Mg Mn	•••		10	0.100	0.09	94.41		0.088	57.7 1					
Mo Na Nd	194,845	7:												
Ni P	308 465	1% 1%	500	5.000	4.70	94.11		4.539	90.81					
Pb Pd Rh Sb	91	11	500	5.000	4.92	98.51		4.373	87.51					
Se Si Sn			1000	10.000	10.53	105.3%		9.833	98.32	;				
Sr Te Th Ti														
†1 U ¥			2000	20.000	19.64	98.21		17.555	87.81	;				
W Y Zn														
21			50	0.500	0.41	n/a		0.438	87.61	;				

Note: 1) Above 5 times MDL, results reportable to 2 1/2 significant digits. "()" results <MDL but =>IDL.
2) Above 5 times MDL, precision is estimated at +/-10% and accuracy at +/-15%.
3) Where "Blank" results are >IDL the blank has been subtracted from the "Spike Control".
4) Spike Flag (N) indicates spike is outside the QC recovery criteria.
5) If 20% flag = """, Then RPD >20% and both sample results >MDL.
6) If spike is <25% of sample concentration, Rec is not calculated as indicated by the "n/a".
7) If sample or duplicate results are <MDL then average is not calculated (i.e., "---").

WHC-SD-WM-DP-_____/45__, REV.___/

Tank BY-108, Core 99 Drainable Liquid, Segment 3, ICP (Acid Digestion) Table 2-3b:

	TWRS PNL-ALO-21 JA 1CP WB7	1 3520	* Samp	ple Result	LYSIS REPORT s Acid Di rainable Liq	gestion	••		09/12/95 m091295b e 1 of 1
Samp Log∉:	Seg 3 95-07935- Al Sam	95-07935- Al SamDil		Seg 3 5-07935- A2 Dup	95-07935- AZ DupDil				
Dil Fctr: ICP Dil:	125.00 10.00			125.00 10.00	625.00 50.00			**Estim	-4-4**
Analyte	<ug ml<="" th=""><th>-Sample ug/mL</th><th>·> <· 10</th><th>10.00 Du ug/mL</th><th>plicate ug/mL</th><th>> ID</th><th>201 RPD Flg</th><th>IDL ug/mL</th><th>MDL ug/mL</th></ug>	-Sample ug/mL	·> <· 10	10.00 Du ug/mL	plicate ug/mL	> ID	201 RPD Flg	IDL ug/mL	MDL ug/mL
Ag Al		ND	11	ND 37,429	ND 38,529	31	01	0.015	0.1500
Âs) ND	1.	(32)	30,329 ND	34	0.	0.060 0.080	0.6000 0.8000
8	44	(46)		45	(49)		0:	0.020	0.2000
Ba				ND	ND			0.010	0.1000
Be Bi				CM CM	GN CN			0.005	0.0500 1.0000 0.5000
Ca				CN	ND ND			0.100 0.050	0.5000
Čď				ND	ND			0.015	0.1500
Çe				ND.	ΝD			0.100	1.0000
Ço) (9)		(9)				0.010	0.1000
Cr Cu			31	291 (10)	300 (8)	31	11	0.020 0.010	0.2000 0.1000
Dy				ND ND	ND'			0.050	0.5000
Ēu	. אם	ND		ND	ND			0.100	1.0000
<u>F</u> e				104	(109)		7%	0.020	0.2000
K				2,811	(2,836)		17	2.000	20.0000
La Li				ОИ СИ	ND ND			0.050 0.030	0.5000 0.3000
Mg				DM	ND			0.100	1.0000
Mn	ND			,ND	ND			0.005	0.0500
Mo				(15)				0.030	0.3000 0.8000
Na Nd				OvrRng ND	194,961 CM		52	0.080 0.050	0.5000
Ni Ni			47	243	256	5%	2:	0.030	0.3000
P	452	(453)		457	(454)		15	0.100	1.00001
P5				97	(88)		21	0.060	0.6000 3.0000
Pd Rh				QN QN	ND ND			0.300 0.300	3.0000
\$b				ND ND	ND ND			0.050	0.5000
· Se				ND	CN			0.100	1.0000
Si				(119)				0.500	5.0000
Şn				ND.	NO			1.000	10.0000
Sr Te				(5) ND	(5) CM			0.005 0.500	0.0500 5.0000
Th				ND.	םא מא			0.800	8.0000
Tí	CM			ND	CN			0.005	0.0500
ווַ				(77)				0 .500	5.0000
U Y	ND NO			ND ND	ND ND			2.000 0.010	20.0000 0.1000
¥	ND 776			ND 772	ND (777)		1%	0.500	5.0000
· Ÿ	ÓN			מא	ND		••	0.010	0.1000
Zn	(12	פא ((12)	ND			0.020	0.2000
Zr	ר א ד	ם א ס		ND.	МÐ			0.010	0.1000

Note: 1) Above 5 times MDL, results reportable to 2 1/2 significant digits. "()" results <MDL but =>IDL.

2) Blank is reported adjusted for the an "average sample volume".

3) The process "blank" has not been subtracted from the "Sample & Duplicate" results.

4) Above 5 times the MDL, precision is estimated at +/-10% and accuracy at +/-15%.

5) "ND" = Not Detected; Estimated Sample Detection timit (ug/mL) = (IDL in ug/mL) * (Dil Fctr).

6) If Percent Difference (1D) >10% and sample results >5% MDL, chemical/physical interferences may exist.

7) If 20% flag = "*", then RPD >20% AND both sample and duplicate results >MDL.

File ICP-325-405-1/ 950255a 8) Data, including calibration/QC, archived

Ion Chromatographic Analysis

WHC-SD-WM-DP-145, REV. 1

Sample Preparation and Analysis:

The IC analyses were performed on the water leaches prepared from homogenized material from Core 99 Segment 1 and Quarter Segments 2A, 2D, 3A, and 4A through 4D and on dilutions of the drainable liquids from Segment 2 and Segment 3. The water leach samples were prepared following procedures PNL-ALO-103, "Water Leach of Sludges, Soils, and Other Solid Samples." The leaches and dilutions were performed in the SAL with sample and QC solution aliquots being transferred to the Inorganic Analysis Group for IC analysis. All IC analyses for the anions fluoride, chloride, nitrite, nitrate, phosphate, and sulfate were performed on a Dionex 4500i Ion Chromatograph system following procedure PNL-ALO-212, "Determination of Inorganic Anions by Ion Chromatography."

Analytical Results:

The IC analytical results are presented in Tables 2.4a through 2.4e. The IC analyses were conducted on 9/14/95, 9/18/95, and 9/28/95; the results reported are restricted to the 9/14/95 and 9/28/95 runs due to consistent failure of the verification standards on 9/18/95. The results for the drainable liquids are reported in μ g/mL and the results for the water leaches of the sludges in μ g/g. After applying the dilution and leaching processing factors, the typical detection limits are 30 μ g/mL (or 30 μ g/g) halides and 50 μ g/mL (or 50 μ g/g) oxy-anions. However, due to the necessity to dilute the samples to assure that all reported results fell within the calibration range, some reported detection limits are adjusted for additional analytical dilutions.

Quality Control, Precision, and Accuracy:

Sample and duplicate results are reported for both drainable liquids and water leaches of the sludge segment and quarter segment samples. Matrix spikes, blank spikes, and leach processing blanks are also reported for the

sludge samples, as well as a dilution blank for drainable liquids.

Significant difficulties were experienced with fluoride and phosphate analyses. The fluoride is impacted by significant interferences (most probably from organic anions which elute near the same retention times a fluoride), and the phosphate appeared to experience a matrix-related interference or column degradation (i.e., the verification standard for phosphate experienced consistent failure). The phosphate is considered to be reasonably reliable since ICP phosphorus analysis of the same samples confirms the reported phosphate results; however, the fluoride results are considered best available estimates. Beside phosphate and fluoride, nitrite and sulfate also slightly degrades with time and additional sample loading on the column. Based on the continuing calibration verifications standards, nitrite and sulfate may be bias high by as much as ten percent.

The RPD between duplicates is used to evaluate the precision of the sample processing, analytical sampling, and IC analysis. The majority of RPD values meet the TCP 10% criteria; however, a few anions demonstrate very poor RPDs (i.e., up to 90%) for specific samples. The poor RPDs are attributed primarily to the inconsistency of the sample material and/or the inability to obtain fully representative analytical samples. Reanalyses were performed for the majority of the samples exhibiting greater than 20% RPD; the reanalyses confirmed the original results. Very large RPD are restricted primarily to Segment 4 samples (4A through 4D); this is not unrealistic since Segment 4 is most likely the tank heel and may represent the largest variability in the tank material.

The accuracy of the IC results is estimated by the matrix spike recovery. Low recoveries on matrix spikes provide indications of matrix interferences which may adversely affect the reported analytical results. The matrix spiking solution was prepared based on the best available information on the anion concentrations suspected within Tank BY-108. Unfortunately, many of the matrix spikes are unusable due to the fact that the tank concentrations are significantly higher than anticipated. The spikes for C1, NO_2 , and NO_3 for the drainable liquids, F and PO_4 for the sludges could not be recovered due to the high concentration of the anions in the samples. The <u>only</u> matrix spike

spike meeting the 90-110% TCP criteria was SO_4 for the drainable liquids. However, other than those spikes too low to recover, all matrix spikes recovered within the 75%-125% acceptance criteria of the governing QA plan. In general, recoveries on blank spikes were good, except for Cl for the sludges (i.e., 120%) and NO_2 for both the sludges and drainable liquids (i.e., 86% and 88%, respectively). Degradation of the column, most likely caused by insoluble sample matrix components depositing on the column, was observed for all runs which involved Tank BY-108 leach samples.

The leaching/dilution processing blanks provide information on the contamination potentially introduced during the dilution process. Very slight chloride, nitrate, and sulfate blank concentrations were observed. However, these blanks typically have no impact on the reported results, since the anion concentration in the samples is high compared to the blank concentration.

The IC water leach blanks reported in Tables 2.4a through 2.4e have been increased from those reported in the IC data package (see Appendix C). The IC blank is typically calculated using an nominal 1 mL (or 1 g) "equivalent" sample size. However, the drainable liquids were processed using an average 0.2 mL samples size and the sludges were processed using a average 0.5 mL sample size. Therefore, the blank concentrations (or detection limits) reported in the data package have been increased 5-fold for the drainable liquids and 2-fold for the sludges. This provides a better representation of the blank's contribution to the sample concentration. Also, the IC results reported in the data package for the drainable liquid samples are calculated in $\mu g/g$; the results reported in Tables 2.4a through 2.4e have been adjusted for density and reported as $\mu g/mL$.

Sample Preparation and Analysis:

The total cyanide analyses were performed "directly" on homogenized material from Core 99 Segment 1 and Quarter Segments 2A, 2D, 3A, and 4A through 4D, and on diluted drainable liquids from Segment 2 and Segment 3. The sludge and drainable liquid samples were pre-treated and distilled following procedure PNL-ALO-285, "Total Cyanide by Remote Microdistillation and Argentometric Titration". The microdistillations were performed in the SAL and distillates transferred to the Inorganic Analysis Group for subsequent cyanide determination. Total cyanide was determined either by argentometric titration or calorimetrically using a Lachat Autoanalyzer following procedure PNL-ALO-289, "Total Cyanide Determination by Spectrophotometry (Manual or Automated) or Argentometric Titration".

Analytical Results:

The total cyanide results are presented in Tables 2.4a through 2.4e. Since the total CN was anticipated to be very high in Tank BY-108, titrations were initiated on the distillates prepared from the microdistillation operation. The initial samples were titrated, i.e., sludge Segments 1 sample and duplicate and Segment 2A sample and duplicate, and measured essentially no appreciable cyanide. Based on this information, the residual solutions from these samples and the remaining segment samples were analyzed calorimetrically. The results reported from agrentometric titration for sludge Segment 1 sample is an upper estimate only, and since the entire sample was titrated, there is no calorimetric result available. All sludge samples are reported in $\mu g/g$ and the drainable liquids are reported in $\mu g/mL$.

Quality Control, Precision, and Accuracy:

Sample and duplicate results are reported for both drainable liquids and each segment and quarter segment. Distillation blanks, matrix spikes, and spike blanks are also reported for the distillation batch. In addition to the

WHC-SD-WM-DP-///S, REV._/

SAL distillation batch QC samples, an additional distillation was performed by the Inorganic Analysis Group to provide an alternate verification standard to validate the calibration curve established by the calibration standards. For total cyanide, the distilled blank spike is considered the laboratory control standard; this standard recovered at 89% and 88%. Although this recovery is within the 85%-115% acceptance criteria for the governing QA Plan, it exceeds the 90%-110% criteria of the TCP. Besides the control standard, the continuing calibration verification standard failed to meet the 90%-110% TCP accuracy requirement, but is also within the 85%-115% acceptance criteria of the governing QA plan.

The TCP has established a 10% criteria for precision; the RPD between sample and duplicate is used to evaluate the precision of the cyanide analysis. Sludge Segment 1 RPD is unavailable due to the inability of the titration method to accurately measure low cyanide concentration. Also, since Segment 4C sample and Segment 4D duplicate were lost during the microdistillation, no RPDs could be calculated for these segments.

The accuracy of the total cyanide method (i.e., distillation and analysis) is estimated by the use of matrix spikes. Low recoveries on matrix spikes suggest that the reported results may be bias due to matrix interferences. The spike levels were selected based on the expected cyanide content of the tank material; however, in general the tank drainable liquids and sludge contained significantly less cyanide than anticipated. The spike recoveries were reasonably good at 88% for the drainable liquid and 79% for the sludge. Although the spike recovery for the sludge did not meet the TCP 90%-110% criteria, the spike is not considered representative of the samples since the spike is two orders of magnitude above the maximum sample concentration and required very high dilutions to be measured calorimetrically.

The distillation blank provides information regarding cyanide contamination introduced during the distillation and/or measurement process. Except for the Segment 4C sample and the Segment 4D duplicate, which have suspect results, the blank contributed less than 1% to any sample.

Besides the estimate reported for the Segment 1 sample, the results for the Segment 1 duplicate and the Segment 2A sample and duplicate are also reported as estimates, since the initial volume of the distillate and the final volume remaining (after attempts at measuring the cyanide by titration) are not accurately known. The volumes remaining after the attempt at titrating these samples is required to calculate the concentration of cyanide in the aliquots taken for the calorimetric measurement. These volumes have been estimated by weighing; however, errors associated with estimating the volume are not expected to affect the final reported concentration for these segments by more than five to ten percent. Due to the small added uncertainty for Segment 1 and Segment 2A results, and the loss of the Segment 4C sample and 4D duplicate, redistillation and analysis was considered for these segments. However, with the highest cyanide concentration being about 25 times lower than the threshold action limit, no reruns were performed.

Total Organic Carbon, Total Inorganic Carbon, & Total Carbon Analysis

Sample Preparation and Analysis:

The total organic carbon, total inorganic carbon, and total carbon (TOC/TIC/TC) analyses were performed "directly" on homogenized material from Core 99 Segment 1 and Quarter Segments 2A, 2D, 3A, and 4A through 4D, and on diluted drainable liquids from Segment 2 and Segment 3. The TOC/TIC/TC analyses of the core sludge segments and quarter segments were performed by the SAL using a UIC Coulometrics system following procedure PNL-ALO-381, "Determination of TC, TOC, and TIC in Radioactive Liquids, Soils, and Sludges by the Hot Persulfate Method." Dilutions of the drainable liquids were also performed in the SAL and sample aliquots then transferred to the Inorganic Analysis Group for subsequent UV-catalyzed TOC/TIC/TC analysis using a Dohrmann DC80 system following procedure PNL-ALO-382, "Solution Analysis: Carbon."

Analytical Results:

WHC-SD-WM-DP-145, REV.1

The TOC/TIC/TC analytical results are presented in Tables 2.4a through 2.4e. The drainable liquids are reported in μ g/mL and the sludge segments and quarter segments are reported in μ g/g. For all TOC/TIC/TC analyses, the results exceed the estimated method detection limit of the method used; that is, 30 μ g/g TIC and 50 μ g/g TOC for the hot persulfate method, and 50 μ g/mL TC or TIC for the UV-catalyzed solution method. For the hot persulfate method, the TIC and TOC are analyzed on each sample and the TC is obtained by summation. For the UV-catalyzed solution method, the TC and TIC are analyzed on each sample and the TOC is obtained by difference.

Quality Control, Precision, and Accuracy:

Sample and duplicate results are reported for both drainable liquids and each segment and quarter segment sample. Processing blanks are also reported for the drainable liquids, since the drainable liquids were diluted by SAL prior to TOC/TIC/TC analysis. However, no processing blanks are reported for the sludge segment samples analyzed by the direct hot persulfate method. This method requires results to be corrected for the average blank carbon levels, as well as the average check standard recoveries. Therefore, all sludge sample results have been corrected for the blank contribution and the check standard recovery. Matrix spikes are included for both the drainable liquid UV-catalyzed analyses and the sludge segment hot persulfate analyses.

Neither the hot persulfate method nor the UV-catalyzed method undergo user calibration for the carbon measurements; the calibration of the instrumentation is established by the manufacturer. Both methods verify instrument response by the use of check standards. The hot persulfate method uses the check standards to adjust the reported result for the average standard recovery. The recoveries demonstrated by the hot persulfate method ranged from 90.5% to 97.1% for TIC and 87% to 96.6% for TOC. Although two TOC standards recovered at less than the 90% recovery required by the TCP, the average TOC recovery used to correct the analytical results was above 90% for each analytical run. Since the analytical results are corrected for the

average standard recovery, the demonstrated recovery should not affect the quality of the reported results.

The RPD between duplicates is used to evaluate the precision of the analytical laboratory sample processing and analysis. The majority of the RPD values for sludges (analyzed by the hot persulfate method) meet the TCP 10% criteria. However, a few sludge samples and both drainable liquid samples (analyzed by the UV-catalyzed method) do demonstrate very poor RPDs (i.e., up to 58% for the sludges and 75% for drainable liquids). The poor RPDs for the sludges are attributed primarily to the inconsistency of the sample material and/or the inability to obtain fully representative analytical samples. In the case of TOC for the UV-catalyzed method, the poor RPDs are attributed to the small difference between the TC and TIC sample concentrations.

The accuracy of the TOC/TIC/TC results is estimated by the matrix spike recovery. Low recoveries on matrix spikes provide indications of matrix interferences which may adversely affect the reported analytical results. The hot persulfate TOC/TIC/TC results show excellent recovery for Segment 1, but very low recovery for Quarter Segment 4A. Although the TOC/TIC are very high in Quarter Segment 4A, the TOC/TIC spikes added were 25% above the TOC/TIC measured in the sample, which should have provided adequate spike for determining recovery. Considering this and the fact that the RPD for Quarter Segment 4A is very good, suggests that the low spike recovery is matrixrelated (perhaps a high salt content), and that the carbon values reported may be bias low. The UV-catalyzed TOC/TIC/TC sample spike recoveries were quite poor for both TC and TIC, recovering at 130% and 69%, respectively. Since the blank spike recoveries are within the 90%-110% acceptance criteria, the poor spike recoveries on the drainable liquids are attributed to poor analytical reproducibility (i.e., 28% RPD on TIC) and matrix interferences (e.g., possible residual suspended solids after filtering).

The processing blank for the drainable liquid samples analyzed by the UV-catalyzed method provides information on the contamination potential introduced during the dilution process. A very slight TC blank concentration

was observed. However, it has no impact on the reported results, since the TC concentration in the samples is very high compared to the blank concentration.

Table 2-4a: BY-108, Core 99 Drainable Liquid, Segment 2 & Segment 3, Anions/Carbon/CN

Segment 2 Drainable Liquid

Analyte	ALO Log #	Sample (µ/g/mL)	Duplicate (µg/mL)	RPD (%)	βlank (μg/mL)	Smp Spk (%Rec)	Blk Spk (%Rec)
CN	95-07932-G	715	711	<1	0.25	88	88
TOC	95-07932-J	1400	3100	72	<50		
TIC	95-07932-J	8500	6400	28	<50	69	98
TC	95-07932-J	9900	9500	5	64	130	110
Fluoride	95-07932-C	<400	<400	n/a	<35	75	100
Chloride	95-07932-C	3300	3300	0	<35	л/a	100
Nitrite	95-07932-C	57100	56300	1	<70	n/a	88
Nitrate	95-07932-C	230000	236000	2	110	n/a	103
Phosphate	95-07932-C	700	700	0	<70	76	94
Sulfate	95-07932-C	1100	1000	10	80	93	95

Segment 3 Drainable Liquid

Analyte	ALO Log #	Sample (µg/mL)	Duplicate (µg/mL)	RPD (%)	81ank (<i>júg</i> /mL)	Smp Spk (%Rec)	Blk Spk (%Rec)
CN	95-07935-G	521	532	2			
TOC	95-07935-J	2400	1100	72			
TIC	95-07935-J	7200	8100	11			
TC	95-07935-J	9600	9200	4			
Fluoride	95-07935-C	<600	<600				
Chloride	95-07935-C	3400	3400	0			
Nitrite	95-07935-C	60500	61100	1			
Nitrate	95-07935-C	204000	226000	10			
Phosphate	95-07935-C	1300	1300	0			
Sulfate	95-07935-C	1600	1600	0			

Notes:

- "<" indicates not detected above reported value.
- (b)
- (c)
- RPD = "n/a" when either sample or duplicate are <MDL.

 Smp Spk = "n/a" when Sample result >4X spiking level.

 "--" indicates analysis not performed on sample; e.g., only one Blank, Sample Spike, and (d) Blank Spike analyzed per batch or Blank and Blank Spike not required on TOC/TIC/TC.

<u>Table 2-4b</u>: BY-108, Core 99 Sludge, Segment 1 and Segment 2A, Anions/Carbon/CN

Segment 1 Sludge

Analyte	ALO Log #	Sample (µg/g)	Duplicate (Ug/g)	RPD (%)	B1 ank (<i>U</i> g/g)	Smp Spk (%Rec)	Blk Spk (%Rec)
CN	95-07941-G	<260 (e)	95 (f)	n/a	0.6	79	89
TOC	95-07941-J	1290	920	33		94	
TIC	95-07941-J	1150	1170	2		100	
TC	95-07941-J	2440	2090	15			-
Fluoride	95-07941-C	6600	5400	20	<20	n/a	100
Chloride	95-07941-C	700	700	0	80	80	120
Nitrite	95-07941-C	8000	8200	2	<60	85	86
Nitrate	95-07941-C	55000	67000	20	160	111	101
Phosphate	95-07941-C	63000	52000	19	<60	n/a	91
Sulfate	95-07941-C	1300	1100	17	120	87	97

Segment 2A Sludge

Analyte	ALO Log #	Sample (µg/g)	Duplicate (µg/g)	RPD (%)	Blank (µg/g)	Seep Spk (%Rec)	Blk Spk (%Rec)
CN	95-07942-G	116 (f)	120 (f)	3	**		
TOC	95-07942-J	890	870	2			
TIC	95-07942-J	1470	1590	8			
TC	95-07942-J	2360	2460	4			
Fluoride	95-07942-C	<500	<500	n/a			
Chloride	95-07942-C	800	800	0			
Nitrite	95-07942-C	12400	11300	9			
Nitrate	95-07942-C	590000	610000	3			
Phosphate	95-07942-C	2200	2100	5			
Sulfate	95-07942-C	900	900	0			

Notes:

- (a) "<" indicates not detected above reported value.
- (b) RPD = "n/a" when either sample or duplicate are <MDL.
- (c) Smp Spk = "n/a" when Sample result >4X spiking level.
- (d) "--" indicates analysis not performed on sample; e.g., only one Blank, Sample Spike, and Blank Spike analyzed per batch or Blank and Blank Spike not required on TOC/TIC/TC.
- (e) Sample result estimated by titration; see narrative.
- (f) Estimated value based on an estimate of final distillate volume used for calorimetric analysis; see narrative.

<u>Table 2-4c</u>: BY-108, Core 99 Sludge, Segment 2D and Segment 3A, Anions/Carbon/CN

Segment 20 Sludge

Analyte	ALO Log #	Sample (µg/g)	Duplicate (µg/g)	RPD (%)	Blank (µg/g)	Smp Spk (%Rec)	Bik Spk (%Rec)
CN	95-07943-G	149	135	10			
TOC	95-07943-J	2490	2090	17	. =-		
TIC	95-07943-J	2340	2480	6			
TC	95-07943-J	4830	4570	6			
Fluoride	95-07943-C	3900	3800	3			
Chloride	95-07943-C	1200	1100	9			
Nitrite	95-07943-C	20800	19300	7			
Nitrate	95-07943-C	247000	254000	3			
Phosphate	95-07943-C	14100	13500	4			
Sulfate	95-07943-C	9800	9500	3			

Segment 3A Sludge

Analyte	ALO Log #	Sample (µg/g)	Duplicate (µg/g)	RPD (%)	Blank (Ug/g)	Smap Spk (%/Rec)	Blk Spk (%Rec)
CN	95-07944-G	195	191	2			
TOC	95-07944-J	3540	2670	28			
TIC	95-07944-J	13100	9100	36			
TC	95-07944-J	16700	11700	35			
Fluoride	95-07944-C	5600	4800	15		1	
Chloride	95-07944-C	1200	1100	9			
Nitrite	95-07944-C	20300	17700	14			
Nitrate	95-07944-C	235000	329000	33			**
Phosphate	95-07944-C	7600	9700	24			
Sulfate	95-07944-C	19600	15400	24			

Notes:

- "<" indicates not detected above reported value. (a)
- (b)
- (c)
- RPD = "n/a" when either sample or duplicate are <MDL.

 Smp Spk = "n/a" when Sample result >4X spiking level.

 "--" indicates analysis not performed on sample; e.g., only one Blank, Sample Spike, and (d) Blank Spike analyzed per batch or Blank and Blank Spike not required on TOC/TIC/TC.

WHC-SD-WM-DP-/45 REV. /
Table 2-4d: BY-108, Core 99 Sludge, Segment 4A and Segment 4B, Anions/Carbon/CN

Segmen	t	4 <u>A</u>	<u>51</u>	udge

Analyte	ALO Log #	Sample (Ug/g)	Duplicate (Ug/g)	RPD (%)	81ank (#g/g)	Samp Spk (%Rec)	Blk Spk (%Rec)
CN	95-07945-G	742	760	2			
TOC	95-07945-J	16500	17100	3		80	
TIC	95-07945-J	13600	12700	6		63	
TC	95-07945-J	30100	29800	1	-		
Fluoride	95-07945-C	8300	5200	46			
Chloride Chloride	95-07945-C	1400	1200	15			
Nitrite	95-07945-C	35000	31000	12			_
Nitrate	95-07945-C	101000	197000	64			<u> </u>
Phosphate	95-07945-C	19700	13400	38			
Sulfate	95-07945-C	57800	21400	92			

Seament 4B Sludge

Analyte	ALO Log #	Sample (µg/g)	Duplicate (μg/g)	RPD {%}	Blank (µg/g)	Smp Spk (%Rec)	Bik Spk (%Rec)
CN	95-07946-G	1660	1650	1			
TOC	95-07946-J	13900	13300	5			
TIC	95-07946-J	5090	5530	8			
TC	95-07946-J	19000	18800	1			
Fluoride	95-07946-C	<600	<500	n/a	 _		
Chloride	95-07946-C	1600	1400	13	<u></u>		
Nitrite	95-07946-C	48000	44000	9			
Nitrate	95-07946-C	69000	65000	6			
Phosphate	95-07946-C	32000	46000	36			
Sulfate	95-07946-C	6000	4000	40		T	

Notes:

- "<" indicates not detected above reported value.
- (a) (b) (c) RPD = "n/a" when either sample or duplicate are <MDL.
- Smp Spk = "n/a" when Sample result >4X spiking level.
 "--" indicates analysis not performed on sample; e.g., only one Blank, Sample Spike, and Blank Spike analyzed per batch or Blank and Blank Spike not required on TOC/TIC/TC. (d)

<u>Table 2-4e</u>: BY-108, Core 99 Sludge, Segment 4C and Segment 4D, Anions/Carbon/CN

Segment 4C Sludge

Analyte	ALO Log ≢	Sample (µg/g)	Duplicate (Ug/g)	RPD (%)	Blank (µg/g)	Smp Spk (%Rec)	Blk Spk (%Rec)
CN	95-07947-6	(e)	1660	n/a			
TOC	95-07947-J	5600	4170	29			
TIC	95-07947-J	10500	11000	5			
TC	95-07947-J	16100	15200	6			
Fluoride	95-07947-C	<600	<500	n/a			
Chloride	95-07947-C	1400	1300	7			
Nitrite	95-07947-C	42000	43000	2			
Nitrate	95-07947-C	54000	53000	2			
Phosphate	95-07947-C	60000	67000	11			
Sulfate	95-07947-C	15000	17000	13			

Segment 4D Sludge

Analyte	ALO Log ≢	Sample (µg/g)	Duplicate (µg/g)	RPD (%)	Blank (µg/g)	Smp Spk (%Rec)	Blk Spk (%Rec)
CN	95-07948-G	1150	(e)	n/a			
TOC	95-07948-J	3140	3700	16]	
TIC	95-07948-J	6050	6910	13			
TC	95-07948-J	9190	10600	14			
Fluoride	95~07948-C	<500	<400	n/a			
Chloride	95-07948-C	1300	1100	17			
Nitrite	95-07948-C	40000	34000	16			
Nitrate	95-07948-C	50000	42000	17			
Phosphate	95-07948-C	79000	78000	1			
Sulfate	95-07948-C	21000	9000	80			

Notes:

- "<" indicates not detected above reported value.
- (a) (b) RPD = "n/a" when either sample or duplicate are <MDL.
- Smp Spk = "n/a" when Sample result >4X spiking level. (c)
- "--" indicates analysis not performed on sample; e.g., only one Blank, Sample Spike, and Blank Spike analyzed per batch or Blank and Blank Spike not required on TOC/TIC/TC. (d)
- (e) Distillation prep sheet indicates 95-7947 sample and 95-7948 duplicate lost during distillation.

SECTION 3
RADIOCHEMISTRY

THIS PAGE INTENTIVIVALLY
LEFT BLANK.

Radiochemical analyses were performed on fusion preparations of samples from Segments 1, 2A, 2D, 3A, 4A, 4B, 4C, and 4D and on acid digestions of the drainable liquids from Segments 2 and 3. In all cases a sample and a duplicate were analyzed; for each batch of samples, a hot cell blank was also analyzed. The fused samples were analyzed for total alpha, total beta, ⁹⁰Sr, ^{238,239+240}Pu, uranium, and by gamma energy analysis. The drainable liquids were only analyzed for total alpha, total beta, and by gamma energy analysis. Initially, all of the fusion samples were obtained from the potassium hydroxide fusion preparation. Due to contamination problems noted with one of the blanks for this fusion, analyses were also performed for two samples and a blank prepared by sodium peroxide fusions.

Results for all radiochemical analysis performed on Tank BY-108 are presented in Tables 3-1 through 3-4. It should be noted that both the relative percent difference (RPD) and mean difference (MD) have been calculated. The MD takes individual sample uncertainty into account. Thus, a mean difference less than 1.96 indicates that there is 95% confidence that the sample and duplicate results are in agreement. When the RPD fails but the MD meets this criteria (<1.96) sample precision should be considered acceptable.

Total Alpha Analyses -- Table 3-1: Total alpha analyses were initially performed according to procedures PNL-ALO-420/421. In this method, small aliquots are dried on counting disks and counted using Ludlum scintillation counters. Two problems were noted leading to further analyses. First, the samples for this tank have a very high beta-gamma/alpha ratio. Attempts to make counting plates with reasonable levels of alpha activity resulted in unacceptably high levels of beta-gamma activity. Consequently, samples had to be further diluted resulting in very weak alpha activity and prolonged counting times of 4-8 hours. It was further observed that the counting plates contained residual solids, suggesting probable alpha attenuation due to the residual mass. Although the mass loading due to the sample material was very low (typically < 0.1 mg), solids loading from the fusion flux may have resulted in an alpha absorption effect. Selected samples were reanalyzed

using about half the amount of material in an attempt to determine potential mass absorption effects. Since these tests indicated that mass absorption of the alphas was indeed a problem, most of the samples were reanalyzed with and without a matrix spike of a 239 Pu standard. The net 239 Pu count rate data was then averaged resulting in an average mass absorption correction of 0.722 \pm 20%. This factor was applied uniformly to all data for fused samples. No correction was applied to the drainable liquid data since these samples were prepared by acid digestion (no additional salt flux).

The large relative uncertainty for the mass absorption correction is attributable to the loading density on the 1-inch counting plates. This uncertainty more fairly represents the "gross" nature of the alpha measurement from a complex matrix. At the low alpha levels detected in these samples, a 20% uncertainty should be inconsequential. Isotope-specific analyses are needed to obtain more accurate alpha data.

As a check on the quality of the data, an attempt was made to compare the total alpha results with the sum of the Pu and Am measurements. Unfortunately, ²⁴¹Am data are not available for most of the samples since Am analyses were not requested. Although ²⁴¹Am can also be detected by gamma energy analysis, positive results were only obtained for three samples. The compton scattering background from the higher-energy, high-activity ¹³⁷Cs precludes direct gamma measurement of ²⁴¹Am in the rest of the samples. Hence, there are only three cases where a direct comparison of total alpha and Pu/Am data can be made. In these cases, results are in reasonable agreement; in the other cases it appears that the results are consistent, but not conclusive.

The general agreement between samples and duplicates is poor; however, the uncertainties are quite high for the total alpha data. As discussed below, sample contamination is clearly evident in some of the samples accounting for the high RPD values seen with samples for Segments 1 and 2.

It is also evident that hot cell blanks for the first hot cell preparation batch (95-07941-HCB and 95-07942-H3) indicate significant

contamination above the required level of 5% of the sample activity; however, this was not a problem for subsequent hot cell preparation blanks. Sample 95-07942-H3 is the worst case with alpha contamination higher than the sample, but less than the sample duplicate. Consequently, analyses were rerun on the sodium peroxide hot cell fusion preparation, where samples were available. (Such samples have an "N" label, rather than a "H.") The hot cell blank for this preparation (95-07941-N3) indicated no detectable alpha activity. Unfortunately, such samples were not available for sample 95-07942; however, total alpha results for samples 95-07943 and 95-07944 are slightly less than the original fusion preparation results, suggesting that some alpha contamination may be present for these samples.

<u>Plutonium Analyses -- Table 3-1</u>: Plutonium separations and alpha energy analyses were performed for all of the fusion samples following procedures PNL-ALO-423/422. Samples were run in three batches, as indicated in the tables, and standard and matrix spike recoveries for ²³⁹Pu were excellent for all three batches. Agreement between samples and duplicates is poor for the first hot cell preparation batch, although agreement is better for the subsequent hot cell preparation batches.

The first hot cell preparation blanks (especially 95-07942-H3) indicate significant plutonium contamination, falling between the sample and duplicate for ²³⁸Pu and exceeding both the sample and duplicate for ²³⁹⁺²⁴⁰Pu. It is further interesting to note that the hot cell contamination appears to be predominately ²³⁸Pu whereas the samples themselves are predominately ²³⁹⁺²⁴⁰Pu. This ratio can thus also be used to gauge the extent of the hot cell contamination. The sodium peroxide hot cell prep blanks indicate a much lower level of contamination and, as with the total alpha, the Pu levels are also lower than the first contaminated hot cell prep samples. Although the hot cell blanks still exceed the 5% criteria even for the sodium peroxide fusion, the absolute alpha activity levels are quite low (< 1 nCi/g). Hence, it might be concluded that it is difficult to measure such low levels of alpha activity for samples prepared in our hot cells due to facility contamination.

Most of the Pu activity appears to be concentrated in Segment 4 where Pu levels are typically 100 times higher than for the other segments. This trend is also mirrored in the total alpha data, although Segment 1 may indicate some contamination problems due to the high 238/239+240 Pu ratio. Hence, although contamination problems are evident for both total alpha and plutonium measurements in Segments 1 and 2, these segments appear to contain only about 1% of the alpha activity contained in the Core 99.

<u>Total Beta Analyses -- Table 3-2</u>: Total beta analyses were performed on all samples using procedures PNL-ALO-430/431. In this method, small aliquots of the prepared samples are dried on counting plates and counted using beta gas flow proportional counters. Due to the much longer range of beta particles, there was no concern regarding mass absorption effects as seen with the total alpha measurements.

Most of the total beta measurements show reasonable agreement between the sample and duplicate except for sample 95-07946. The reasons for this difference are not understood, but may be due to sample heterogeneity, as will be discussed later.

As with the alpha and plutonium data, the first hot cell prep batch also shows significant beta contamination, especially for the blank 95-07942-H3. The sodium peroxide fusion blank shows no beta contamination; however, the total beta results for these samples are in good agreement with the potassium hydroxide fusion samples.

The total beta activity results are in good agreement with the sum of the 90 Sr/ 90 Y and 137 Cs data, as discussed later.

 90 Sr Analyses -- Table 3-2: 90 Sr separations were performed for all of the fusion samples following procedure PNL-ALO-433/431. In this method, 90 Sr is separated, dried on counting plates, and counted using beta gas flow proportional counters. A count is taken as soon as possible after the

separation and about three days later to measure the ingrowth of the $^{90}\mathrm{Y}$ daughter activity.

The agreement between samples and duplicates is acceptable except for samples 95-07944 and 95-07946. The first hot cell fusion preparation batch again shows significant ⁹⁰Sr contamination in the blank 95-07942-H3, which is significantly higher than many of the samples. This may account for the high RPD value seen for sample 95-07944. The high RPD for sample 95-07946 may be attributable to sample heterogeneity, as discussed later.

Gamma Energy Analyses -- Table 3-3: Gamma energy analyses were performed for all samples using procedure PNL-ALO-450. Ten milliliters of the sampled prepared in the hot cell were directly counted using germanium gamma detectors. In all cases, the ¹³⁷Cs activity completely dominated the gamma measurements. ²⁴¹Am was detected in three samples and ^{154,155}Eu was seen in four samples. ⁶⁰Co was seen in some samples; however, the data are quite erratic suggesting that this might be due to hot cell contamination. ⁴⁰K was also detected; however, this was not reported since this activity may be due to naturally occurring ⁴⁰K contained in the potassium hydroxide fusion prep material.

The agreement between samples and duplicates for 137 Cs is generally quite good, except for sample 95-07942 (RPD = 32%) where there is known to be significant hot cell contamination, as evidenced in the blank 95-07942-H3 and discussed previously for other analyses. The sodium peroxide hot cell blank indicates no contamination and the samples prepared by this method are in good agreement with the 137 Cs results for the potassium hydroxide fusion.

As a check on the quality of the data, the total beta activities were compared to the sum of twice the 90 Sr (to account for the 90 Y daughter) results plus the 137 Cs data. Although each beta emitter has a different efficiency for detection, 90 Sr/ 90 Y and 137 Cs have nearly identical beta counting efficiencies. The good agreement between the total beta activity and the 90 Sr/ 90 Y and 137 Cs activity sum indicates that these three isotopes account for nearly all of the measured beta activity.

Sample 95-07946 appears to show significant heterogeneity effects between the sample and duplicate for both the total beta, 90 Sr, and 137 Cs results. All three results have high RPD values; however, the total beta activity is in excellent agreement with the sum of the 90 Sr/ 90 Y and 137 Cs activities. This suggests that a real difference between the sample and duplicate exist and may have occurred during the hot cell preparation.

<u>Uranium Analyses -- Table 3-4</u>: Total uranium measurements were performed for all of the fused samples following procedure PNL-ALO-445. In this method, the fluorescence induced by a laser is measured with the sample in solution both before and after the addition of a uranium standard (method of standard addition).

Agreement between samples and duplicates is generally acceptable except for samples 95-07942 where hot cell contamination is quite evident, as discussed previously. Unfortunately, the sodium peroxide hot cell blank also indicates similar levels of uranium contamination. However, it should also be pointed out that most of the uranium is contained in Segment 4 and that the uranium concentrations are at least a factor of 100 times lower in the other segments. As with the alpha problem, this may again be pointing to difficulties in detecting low levels of uranium in samples prepared in our hot cells.

Also, it should be noted that the uranium results from the ICP (see Tables 2-1c and 2-1d) track very favorably with the fluorescence uranium result.

WHC-SD-WM-DP-145, REV. 1 Table 3-1: Tank BY-108. Core 99 Alpha Analysis Results

			Total Alpha			Pu				
	Ртер		Analytical	Total Alpha	+/-%	Analytical	238-Pu	+/-%	239+240-Pu	+/-%
Sample Number	Botch	<u> </u>	Batch	uCl/o	error	<u>Batch</u>	uCi/g	error	uCl/g	error
Segment 1										
95-07941-H1T	. 1	F/smp	1	4.22E-02	22	1	2.106-02	21	5.97E-03	23
95-07941-H21 Mean Difference	1	F/dup	1	1.91E-01 1.81	21	1	8.33E-03 1.42	. 8	5.37E-03 0.21	8
RPD				128	(86 x		ii x	4
95-07941-HCB	1	F/olk	1	7.80E-03	27	1	2.63E-03	. 11	1.05E-03	14
		std ms	1	101%		1			98% 101%	
		blk	1	<9.3E-04		j	<1.7E-04		<1.7E-04	
Segment 2 Dro	inable	tionid	/uCi/m1*	•						
95-07932-A1	3	A/smp	2	3.65E-03	29					
95-07932-A2	3	A/dup	2	<1.3E-03						
95-07932-A3	3	A/bik	2	<1.3E-05						
Segment 2A										
95-07942-H1	1	F/smp	1	1.86E-03	47	1	1.22E-03	16	3.53E-04	21
95-07942-H2 Mean Difference	1	F/dup	1	7.84E-03 1.27	28	1.	2.43E-03 1.83	11	8.28E-04 1.64	15
RPD				123 x	į.		66 x		80 x	
95-07942-H3	1	F/blk	1	4.66E-03	2 7	1	1.52E-03	12	1. 45E-0 3	12
Segment 2D										
95-07943-H1	1	F/smp	1	4.19E-03	25	1	1.15E-03	9	1.43E-03	9
95-07943-H2	1	F/dup	1	2.80E-03	26	1	2.35E-04	13	9.15E-04	11
Mean Difference RPD				0.54 40 x	,		4.24 \$ 132 x		1.58 44 x	
95-07943-N1	4	FZ/smp	3	2.10E-03	47	3	1.95E-04	16	9.75E-04	12
		std				3	1 75 64		102%	
		Ыk				3	<1.7E-04		<1.7E-04	
Segment 3 Dro										
95-07935-A1 95-07935-A2	3 3	A/smp A/dup	2 2	<1.4E-03 <1.4E-03						
43-0/433-AZ	3	7000	2	₹1. 4 E-03						
Segment 3A	-			0.005.00	-00		1075 00	.,	2 045 02	,,
95-07944-H1 95-07944-H2	1	F/smp F/dup	1	9. 29 E-03 1.01E-02	23 23	1	1.87E-03 1.60E-03	11 10	3.36E-03 5.02E-03	11 10
Mean Difference	•	1,000	•	0.13		•	0.52	,	1.33	
RPO		7. temp	•	8 7.005.03	21	2	16 X	13	40 x 3.08E-03	10
95-07944-N1 05-07941-N3	4 4	FZ/smp FZ/blk	3 3	7. 99E-03 <2.4E -03	31	3 3	4.72E-04 2.84E-04	34	1.52E-04	37
			•							
Segment 4A 95-07945-H1	2	f/smo	1	1.506-01	22	2	1.11E-02	14	2,19E-01	9
95-07945-H2	2	F/dup	i	1.74E-01	22	2	3.02E-03	16	1.09E-01	ίο
Mean Difference				0.24			2,48 \$		2.44 \$	
RPD 95-07945-H3	2	F/Dlk	1	15 > <1.0£-03	15	2	114 x 5.04E-04	23	67 x 3.19E-04	25
75-07 740-113	2	std	Į.	(1.02-00	,,,	2	0.0-2		103%	20
		ms.				2	10504		92%	•
		bik				2	<1.9E-04		<1.9E-04	
Segment 4B						_				_
95-07946-H1T	2	F/smp] 	3.78E-01 2.82E-01	21 21	2 2	6.60E-03 6.06E-03	15 16	2.47E-01 1.94E-01	9
95-07946-H21 Mean Difference	2	F/dup	,	0.48	21	. 2	0.002-03	10	0.94	•
RPD				29	κ	_	Ŷ		24 x	
95-07946-HCB	2	F/bik	1	7.14E-03	25	2 .	3.34E-03	11	7.03E-04	15
Segment 4C										
95-07947-H1	2	F/smp	1	4.50E-01	21	2 2	9.58E-03 7.54E-03	14 13	1.42E-01 1.37E-01	10 9
95-07947-H2 Mean Difference	2	F/dup	1	2.93E-01 0.70	21	2	7.54E-U3 0.61	13	0.13	y
RPD					K		24 x		4	
Seament 4D										
Segment 4D 95-07948-H1	2	F/smp	1	3.67E-01	23	2	1.23E-02	13	1.69E-01	10
95-07948-H2	2	F/dup		3.026-01	21	2	9.15E-03	14	1.65E-01	11
Mean Difference				0.31 19 :	x		0.77 29 x		0.08 2	
RPD				17	^		47 A		•	

^{\$ =} the mean difference result is greater than or equal to 1.95, there is 95% confidence that the two results are not equal.

^{*} smp = sample, dup = duplicate, bik = methods blank, std = standard F = KOH - KNO3 Fusion in Ni cruaible, FZ = No2O2 - NoOH Fusion in 2r cruaible, A = Acid Digestion x = RPD value is greater than 10%. ** Only Drainable Liquid samples are reported in uCl/mL.

WHC-SD-WM-DP-145, REV. 1
Table 3-2: Tank BY-108, Core 99 Beta Analysis Results

Sample Number	Prep Batch	•	Total Beta uCl/g	+/- % error	Sr-90 AB	\$-90 uCl/g	+/- % error
Segment 1 95-07941-H1T 95-07941-H2T Mean Difference	1	F/smp F/dup	2.61E+01 2.21E+01 1.95	3 3	1	3.43E+00 2.94E+00 0.68	8 8
RPD 95-07941-HCB	1	F/blk std ms blk	17 x 6.02E-01	10	1 1 1 1	15 x 1.19E-01 104% 114% <3.3E-02	30
Seament 2 Dra	inable	Liquid (uCi/mL)	••				
95-07932-A1	3	A/smp	1.42E+02	4			
95-07932-A2 Mean Difference	3	A/dup	1.44E+02	4			
RPD 95-07932-A3	3	A/blk	0.12 1 1.93E-03	6			
Segment 2A							
95-07942-H1	1	F/smp	2.39E+01	3	1	2.60E-01	16
95-07942-H2	1	F/dup	3.03E+01	3	1	2.706-01	15
Mean Difference RPD			2.76 \$ 24 x			0.09 4	
95-07942-H3	ī	F/blk	1.07E+01	4	1	1.68E+00	9
Segment 2D							
95-07943-H1	1	F/smp	4.94E+01	3	1	2.94E+00	8
95-07943-H2 Mean Difference	1	F/dup	4.57E+01	3	1	2.87E+00	8
RPD			0.92 8			0.11 2	
95-07943-N1	4	FZ/smp	5.45E+01	3	3	2.83	8
Segment 3 Dra	inable	Liquid (uCi/mL) *	•				
95-07935-A1	3	A/smp	1.46E+02	4			
95-07935-A2 Mean Difference RPD	3	A/dup	1.41E+02 0.31 3	4			
Segment 3A							
95-07944-H1	1	F/smp	5.23E+01	3	1	5.32E+00	8
95-07944-H2 Mean Difference RPD	1	F/dup	6.31E+01 2.20 \$ 19 x	3	1	1.01E+01 2.62 \$ 62 x	8
95-07944-N1	4	FZ/smp	5.15E+01	3	3	6.65E+00	9
05-07941-N3		FZ/blk std blk	<9. E-01		3	<3.3E-02 90% <2.4E-02	
Segment 4A	_				_		_
95-07945-H1 95-07945-H2	2	F/smp F/dup	7.37E+02 7.21E+02	4	2	3.38E+02 3.69E+02	8 8
Mean Difference	•	.,,,,,,	0.19	•	-	0.39	·
RPD 95-07945-H3	2	F/blk	2 1.30E-01	15	2	9 <3.3E-02	
70-07740-110	•	std ms blk	1.302-01	15	2 2 2	116% 96% <3.3E-02	
Segment 48							
95-07946-H1T 95-07946-H2T	2 2	F/smp	1.22E+03	4	2 2	5.33E+02	8 8
Mean Difference	2	F/dup	8.41E+02 3.20 \$	4	2	3.76E+02 1.50	. •
RPD 95-07946-HCB	2	E/MIV	37 X	11	2	35 x	
	4	F/blk	2.36E-01	"	4	<3.7E-02	
Segment 4C 95-07947-H1	2	F/smp	2.52E+03	4	2	5 800 .00	8
95-07947-H1 95-07947-H2 Mean Difference RPD	2	F/dup	2.52E+03 2.71E+03 0.64 7	4	2	5.89E+02 6.62E+02 0.51 12 x	8
Segment 4D							
95-07948-H1 95-07948-H2 Mean Difference	2 2	F/smp F/dup	3.69E+03 3.84E+03 0.35	4	2	7.65E+02 8.56E+02 0.50	8 8
RPD		•	4			11 x	

^{\$ =} the mean difference result is greater than or equal to 1.96, there is 95% confidence that the two results are not equal.

[&]quot;smp = sample, dup = duplicate, blk = methods blank, ms = matrix spike, std = standard F = kOH - kNO3 Fusion in Ni cruable, FZ = Na2O2 - NaOH Fusion in Zr cruable, A = Acid Digestion x = RPD value is greater than 10%.
"Only Drainable Liquid samples are reported in uCl/mL.

WHC-SD-WM-DP-145, REv.) Table 3-3: Tank BY-108, Core 99 Gamma Energy Analysis (GEA) Results

Somple Number	•	Co-60 uCl/g	+/- % Error	Cs-134 uCl/g	+/- % Error	Cs-137 uCl/g	+/- % Error	Eu-154 uCi/a	+/- % Error	£u-155 uCl/ <u>a</u>	+/- % Error	Am-241	+/- %
SUITIDIE NUTTIDE		00/0	<u> </u>	00/0	<u> </u>	00/0	EIO	<u> </u>	_ 6101	UCI/G	<u> </u>	uCl/o	Error
Segment 1													
95-7941-H1T	F/smp	8.49E-03	12	<8.E-03		2.026+01	3					<3. E-02	
95-7941-H2T	F/dup	<0. E-03		<2.E-02		1.77E+0}	3					1.16E-01	15
Mean Difference RPD						1. 5 5	٠ '						
95-7941-HCB	F/blk	1.77E-03	15	1.67E-03	18	4.30E-01	` 4					<4. E-03	
95-7941-N3	-	<.E-03	=	<5E-03		3.81E-02	12	<2.E-02		<2.E-02		-2. E-02	
Segment 2 Drai	nable Ha		.13.44										
95-7932-A1	A/smo	<3. E-03	11./	<3. E-02		1.296+02	6	<. E-03		<1. E-01		<7. E-02	
95-7932-A2	Avoluo	<3. E-03		<3. E-02		1.30E+02	6	<. E-03		<1. E-01		<7. E-02	
Mean Difference						0.05	-						
RPO						1							
95-7932-A3	A/blk	<4. E-04		<3. E-04		7.91E-04	35	<o. e-04<="" td=""><td></td><td><1. E-03</td><td></td><td><0. E-04</td><td></td></o.>		<1. E-03		<0. E-04	
Segment 2A													
95-7942-H1	F/smp	<2. E-02		<5.E-02	s.	2.39E+01	5					<1. E-01	
95-7942-H2	F/dup	<3. E-03		<2.E-02		3.306+01	3					<ó. E-02	
Mean Difference							\$						
RPD 95-7942-H3	F/blk	1.64E-03	15	<4.E-03		32 > 9.36E+00	4					<2. E-02	
93-7942-FI 3	r/UK	1.046-03	13	<4.E-00		Y.30C+00	-					€2. E-UZ	
Segment 2D													
95-7943-H1	F/smp	1.94E-03	14	<8.E-03		4.82E+01	3					<4. E-02	
95-7943-H2	F/dup	2.83E-03 0.81	17	<9.E-03		4.53E+01 0.73	3					<3. E-02	
Mean Difference RPD			x			6							
95-7943-N1	F/smp	<6. €-03	^	<3.E-02		5.23E+01	3	<2.E-02		<8.E-02		<8.E-02	
Segment 3 Drai			.13.00										
95-7935-A1	nable uq A/smp		IL)	<4. E-02		1.41E+02	6	<7. E-03		<1, E-01		<7. E-02	
95-7935-A2	A/dup	<3. E-03		<3. E-02		1.37E+02	6	<7 E 03		<1. E-01		<7. E-02	
Mean Difference						0.17	_						
RPD						3							
Segment 3A													
95-7944-H1	F/smp	3.29E-03	10	<9E-03		4.34E+01	3					<4. E-02	
95-7944-H2	F/dup	2.30E-03	13	<8E-03		4.96E+01	4					<3. E-02	
Mean Difference		1.11				1.31							
RPD			х .				۲ ,						
95-7944-N1	FZ/smp	7.82E-3	6	<7E-03		4.33E+1	6	<4.E-03		<2.E-02		<3. E-02	
Segment 4A													
95-7945-H1	F/smp	1.32E-02	3	<5.E-03		7.05E+01	3	3.93E-02	3	3.83E-02	8	1.94E-02	45
95-7945-H2	F/dup	5.44E-03	5	<4.E-03		7.21E+01 0.26	3	3.54E-02 1.23	3	3.67E-02 0.19	8	1.64E-02 0.14	40
Mean Difference RPD		8.08 83	\$ x			2			x	4			c c
95-7945-H3	F/blk	2.22E-03	^ o	<6.E-04		6.05E-02	4	<2. E-03	_	<2. E-03		<2. E-03	-
Segment 4B 95-7946-H1T	F/smp	6.21E-03	14	<2.E-02		1.13E+02	3	8.28E-02	4	8.626-02	12	<9. E-02	
95-7946-H2T	F/dup	7.75E-03	17	<2.E-02		9.48E+01	3	6.20E-02	5	6.75E-02	14	3.20E-02	65
Mean Difference		0.63					\$	2.29	\$	0.67			
RPD			x			18 :	K		×	24	τ .		
95-7946-HCB	F/blk	1.75E-03	16	<1.£-03				<2 . E-03		<2. E-03		<3. E-03	
Segment 4C													
95-7947-H1	F/smp	<3. E-02		<4.E-01		1.20E+03	5	<2. E-01		<2. E+00		<8. E-01	
95-7947-H2	F/dup	<3. E-02		<4.E-01		1.34E+03	5	<2. E-01		<2. E+00		<7. E-01	
Mean Difference						0.78 11							
RPD						- 11							
Segment 4D							_						
95-7948-H1	F/smp	<4. E-02		<5.E-01		2.08E+03	5	<2. E-01 <2. E-01	,	<2. €+00		<1. E+00	
95-7948-H2 Mean Difference	F/dup	<4. E-02		<5.E-01		2.12E+03 0.13	5	€2. E*UI		<2. E+00		<2. E+00	
RPD						.2							
						_							

^{\$} = the mean difference result is greater than or equal to 1.96, there is 95% confidence that the two results are not equal.

^{*} smp = sample, dup = duplicate, bik = methods blank F = KOH - KNO3 Fusion in N crucible, F = KOH - KNO3 Fusion in N crucible, F = No2O2 - NoOH Fusion in 2r crucible, A = Acid Digestion

^{**} Only Drainable Liquid samples are reported in uCI/mL.

WHC-SD-WM-DP- / 45, REV. / Table 3-4: Tank BY-108, Core 99 Uranium Analysis Results

Sample Number	Prep Batch	•	Analytical Batch	Uranium ug/g	+/- % error
Segment 1 95-07941-H1T 95-07941-H2T Mean Difference RPD	1	F/smp F/dup	i i	1.01E+02 1.02E+02 0.02	14 14
95-07941-HCB	1	F/bik stal bik	1 1	3.33E+01 105% < 5. E-02	35
Segment 2A 95-07942-H1 95-07942-H2 Mean Difference	} 1	F/smp F/dup	1	2.20E+01 3.05E+01 0.27	51 35
RPD 95-07942-H3	1	F/blk	1	32 x 1.58E+01	67
Segment 2D 95-07943-H1 95-07943-H2 Mean Difference RPD	1	F/smp F/dup	1	1.26E+02 1.24E+02 0.11	5
95-07943-N1	4	FZ/smp std blk	3 3 3	2 1.35E+02 105% <2.6E-02	5
Segment 3A 95-07944-H1 95-07944-H2 Mean Difference RPD	1	F/smp F/dup	2 2	5.01E+02 5.35E+02 0.11 7	24 18
95-07944-N1 05-07941-N3	4	std blk FZ/smp FZ/blk std blk	2 2 4 3 4	100% <5. E-01 4.72E+02 1.34E+01 105% <3.3E-01	17 67
Segment 4A 95-07945-H1 95-07945-H2 Mean Difference RPD	2 2	F/smp F/dup	1	3.23E+04 3.19E+04 0.08	6 5
95-07945-H3	2	F/blk	1	1 2.19E+01	48
Segment 4B 95-07946-H1T 95-07946-H2T Mean Difference RPD	2 2	F/smp F/dup	2 2	5.49E+04 4.86E+04 0.19 12 x	21 24
95-07946-HCB	2	F/blk	1	<1.1E+01	
Segment 4C 95-07947-H1 95-07947-H2 Mean Difference RPD	2 2	F/smp F/dup std	5 5	4.67E+04 4.82E+04 0.06 3 103%	21 16
		bik		<3. E-01	
Segment 4D 95-07948-H1 95-07948-H2 Mean Difference RPD	2 2	F/smp f/dup	2	4.58E+04 5.04E+04 0.19 10	26 5

NOTE: If the mean difference result is greater than or equal to 1.96, there is 95% confidence that the two results are not equal.

[&]quot; smp = sample, dup = duplicate, blk = methods blank std = standard F = KOH - KNO3 Fusion in Nf crucible, FZ = Na2O2 - NaOH Fusion in 2r crucible, A = Acid Digestion x = RPD value is greater than 10%.

WHC-SD-WM-DP-145, REV.1 SINGLE SHELL TANK

WASTE CHARACTERIZATION PROJECT

TANK BY-108 CORE 99 Revision 0

September 1995

Prepared By:

KL Silvers

LR Greenwood

RT Steele JM Tingey MW Urie

Pacific Northwest Laboratory

THIS PAGE INTENTIONALLY LEFT BLANK.

WHC-SD-WM-DP-145, REV.1 SINGLE SHELL TANK WASTE CHARACTERIZATION PROJECT

(

APPENDICES PRIMARY ANALYTICAL DATA

TANK BY-108 CORE 99 Revision 0

September 1995

Pacific Northwest Laboratory

THIS PAGE INTENTIONALLY LEFT BLANK.

WHC-SD-WM-DP-145, REV. 1 TABLE OF CONTENTS

APPENDICIES: Primary Analytical Data

Appendix A: Supporting Documentation

Al - Signature List

A2 - WHC Chains of Custody

A3 - PNL Chains of Custody

· HLRF To SAL Chains of Custody

SAL To LAB Chains of Custody

A4 - Test Instructions

A5 - Sample Prep Data Sheets

KOH Fusion and Solubility Test for Homogenization Check

Water Leach

Acid Digestion

KOH Fusion

• Na_2O_2 Fusion

Appendix B: Physical Properties

B1 - Introduction

B2 - DSC/TGA Analysis

B3 - Bulk Density Analysis

Appendix C: Inorganic

C1 - Introduction

C2 - ICP Analysis

KOH Fusion Segment & Quarter Segment ICP Analysis

- ${\rm Na_2O_2}$ Fusion Segment & Quarter Segment And Acid Digestion Drainable Liquid ICP Analysis

KOH and Na₂O₂ Fusion Spike Reruns

 Water Leach Drainable Liquid, Segment & Quarter Segment ICP Analysis

. KOH Fusion Homogenization Check ICP Analysis

C3 - IC Analysis

C4 - Total Cyanide Analysis

C5 - TOC/TIC/TC Analysis

• Segment & Quarter Segment TOC/TIC/TC Analysis

Drainable Liquid TOC/TIC/TC Analysis

Appendix D: Radiochemistry

WHC-SD-WM-DP-145, REV. 1

- D1 Introduction
- D2 Total Alpha Analysis
 - KOH Fusion Segment & Quarter Segment and Acid Digestion Drainable Liquid Total Alpha Analysis
- D3 AEA Analysis
 - KOH Fusion Segment & Quarter Segment AEA Analysis
 - Na,O, Fusion Segment and Quarter Segment AEA Analysis
- D4 Total Beta Analysis
 - KOH Fusion Segment & Quarter Segment and Acid Digestion Drainable Liquid Total Beta Analysis
 - Na202 Fusion Segment and Quarter Segment Total Beta and Uranium Analysis
- D5 Strontium-90 Analysis
 - KOH Fusion Segment and Quarter Segment Sr-90 Analysis
 - Na₂O₂ Fusion Segment and Quarter Segment Sr-90 Analysis
- D6 GEA Analysis
 - KOH Fusion Homogenization Check GEA Analysis
 - KOH Fusion Segment and Quarter Segment GEA Analysis
 - Acid Digestion Drainable Liquid and Na₂O₂ Fusion Segment & Quarter Segment GEA Analysis
- D7 Uranium Analysis
 - KOH Fusion Segment and Quarter Segment Uranium Analysis
 For Na₂O₂ Fusion Segment and Quarter Segment Uranium Analysis, See Section D4
- D8 Radiochemistry Calibration and Control Chart Documentation

WHC-SD-WM-DP-145, REV. 1 SINGLE SHELL TANK WASTE CHARACTERIZATION PROJECT

APPENDIX A SUPPORTING DOCUMENTATION

TANK BY-108 CORE 99

September 1995

Pacific Northwest Laboratory

WHC-SD-WM-DP-__)45, REV.__/

A1 - SIGNATURE LIST

325 BUILDING STAFF SIGNATURE LIST

Page 1 of 2

ANALYST NAME	INITIALS	WRITTEN NAME	WRITTEN INITIALS					
		QA/QC						
KJ KUHL-KLINGER	KJK	Fister Mill-	Ding Ty					
OP BREDT	OPB S	Solai Beelt	Sex					
JD MATHESON	JDM /	XD mattern	LDM					
RG SWOBODA	RGS	Carrie	cal					
PROJ MGMT & SUPPORT								
KL SILVERS	KLS	Kultdelin	145					
BM THORNTON	BMT	Breil milhors	ml					
DL BELLOFATTO	DLB /	Juin Je Sellotatts	DIB					
TL BURRUSS	TLB	aunasburrun	HE					
EA NELSON	EAN	Beth A. Nelson	BAN					
LE TOOKER	LET	Jora Toler	BET					
SHIELDED ANALYTICAL LABORATORY								
RT STEELE	RTS	Rich Stule	PIS					
KJ SMITH	KJS	Karlasamoth	Kp					
FV HOOPES	FVH	Wanglinthopen	des					
CE CHAMBERLIN	CEC	CE Chamberly.	OSC.					
LP DARNELL	LPD	Lou Planell	LPD.					
IC HENRY	ICH	Line Chang	ICH					
JK RAU	JKR ´	John K. Road	JKR					
	IN	OREANIC						
MW URIE	MWU	MW Han	moll					
DL BALDWIN	DLB	De Ballin	DEB					
BJ COOK	BJC	Block	ARC					
PK MELETHIL	PKM	PKHelettul	Dan					
MM O'NEILL	MMO	m.m. odill	им.о.					
JJ WAGNER '	JJW	Jaryhagu	Sen					
D ORTIZ	.DO	W. Wat	RO					
DR SANDERS	DRS	Danny Sander	DIE					

L:\PPC\DATAPKG\CORE99

325 BUILDING STAFF SIGNATURE LIST

Page 2 of 2

ANALYST NAME	INITIALS	WRITTEN NAME	WRITTEN INITIALS					
ORGANIC //								
EW HOPPE	EWH	(Home	Out-					
GS KLINGER .	GSK	DA HOW	8.K					
GA ROSS	GAR	SARON.	93×19					
MJ STEELE	MJS C	Mr Steele	-us s					
RADIOCHEM STRY								
LR GREENWOOD	LRG	IR Greenwood	4R8					
SK FADEFF	SDF	Sanda Y Feder	St.7					
RT RATNER	RTR d	RTR	PIR					
TL TRANG -LE	TLT	Trang-le	TTL					
KA POEPPEL	KAP	Va Paral	Han					
KK THOMAS	KKT 4	H. Thomas	XII.					
	PROCES	S CHEMISTRY						
JM TINGEY	JMT	gry Tunger	9~7					
SM HEINISCH	SMH	3rdene	Such					
PR BREDT	PRB	Paul Brett	PRB					
DL ALEXANDER	DLA	1 Cleyandy	1Xa					
GM RICHARDSON	GMR	am Redandon	ame					
D RINEHART ,	DR	D. E. Cenla g	D.E.R.					
SM TINGEY	SMT	Sat 12-	Sno					

A2 - WHC CHAINS OF CUSTODY

THIS PAGE INTENTIONALLY LEFT BLANK.

WHC-SD-WM-DP-_/45_, REV.__/

DON'T SAY IT -- Write It!

Date: September 28, 1995

To: File (BY-108 Core Analysis)

From: KL Silvers

Subject: BY-108 SAMPLES RECEIVED WITHOUT CHAIN-OF-CUSTODY

Tank BY-108 Core 99, Segments 1-4 were received from the WHC 222-S Laboratory starting on August 15 and completing on August 25, 1995. All shipments were documented via a Radioactive Shipping Record (RSR). No chain-of-custody documentation accompanied the shipments. Sample identification (i.e. sample number) was communicated by a fax. During the removal of samples from the shipping casks it was noted that the sample numbers for Segment 4A, 4B, 4C, and 4D did not match the previous faxed sample identification information. The WHC point of contact (POC) was contacted and the issue communicated. The POC advised that Segment 4 had been further subsampled (30g) into new containers with new identification numbers. The new numbers were later faxed and the correlation to sample identification completed.

THIS PAGE INTENTIONALLY

:42

A3 - PNL CHAINS OF CUSTODY

THIS PAGE INTENTIONALLY LEFT BLANK.

HLRF TO SAL CHAINS OF CUSTODY

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 1 of 1 Chain of	Custody NumberTWC-45						
ACL CHAIN OF CUSTODY							
SAMPLE DESCRIPTION Tank BY-108, Core 99, Segment 1 and Ot	r Segment 4B ORIGINATOR HLRF						
APPLICABLE TEST INSTRUCTION T195-TWC-01	— 1) (1) (1) (1)						
ANALYSIS REQUESTED OR DEPARTMENT Homogenization 1	[est						
PREP METHOD N/A							

ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE
95-07941-H1T 95-07941-T-1	BY-108, C99, S1- Top	Scott Tinger	8/24/45	esc	8-29-85
95-07941-H2T31219 95-07941-T-Z	BY-108, C99, S1- Top Dup	S1472	8/29/15	CEC	8-29-95
95-07941-1997 P. 1 95-07941-B-1	BY-108, C99, S1- Bottom	50A TZ	-8/24/15	<i>C5</i> C	8-29-95
95 07941 \$28512115 95-0741-B-2	BY-108, C99, S1- Bottom Dup	Sv4-52_	8/29/95	CEC	4-22-95
95-07946-HFT 10 19 19 19 19 19 19 19 19 19 19 19 19 19	BY-108, C99, Qtr Seg 4B Top	Sort 72_	-\$29/15.	CEC	8-29-95
9 5-07946-1121 11 ² 11	BY-108, C99, Qtr Seg 4B Top Dup	SWATZ	8/24/15	CSC	8-29-85
95-07946-11111 95-07946-8-1	BY-108, C99, Qtr Seg 4B Bottom	Sort Pr	8/24/95	<i>(2)</i>	8-29-95
- 95-07946-HZZ I, ^{4¶6} 1 <i>5-07141-</i> 3-2	BY-108, C99, Qtr Seg 4B Bottom Dup	Sor Pr_	8/29/95	CGC	8-29-85

Original - Project Management

Copy - Sender Copy - Receiver

Page 1 of 1	Chain of Custody NumberTWC-51 ACL CHAIN OF CUSTODY							
SAMPLE DESCRI	PTION Tank BY-108		ORIGINATOR HLRF					
APPLICABLE TEST INSTRUCTION T195-TWC-02								
ANALYSIS REQUESTED OR DEPARTMENT Chemical Analyses per Test Instruction								
PREP METHOD None								
	·		T	· · · · · · · · · · · · · · · · · · ·				
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE			
95-07945	7716	Sator	9-6-15	OSC	9-6-85			
95-07946	7717	Sat 72	1-6-15	/	1			
95-07947	7718	Sand or	9-6-95	\				
95-07948	7719	Sast	7-6-75					
95-07935	7398	Sast D	9-6-95					
95-07932	7397	Sot n_	9-6-15	}				
95-07944	7379	Cart VZ_	1-6-15					
95-07942	7506	Set P	7-6-15					
95-07943	7505	Satt T	- 9-6-15					
95-07941	7504	Scott T2	9-6-15	J	J.			

Original - Project Management Copy - Sender Copy - Receiver

SAL TO LAB CHAINS OF CUSTODY

THIS PAGE INTENTIONALLY LEFT BLANK.

Page 1 of 1 Chain of Custody Number <u>TWC-46</u> ACL CHAIN OF CUSTODY								
SAMPLE DESCRIPTION Tank BY-108, Core 99, Segment 1 ORIGINATOR SAL APPLICABLE TEST INSTRUCTION T195-TWC-02								
	ESTED OR DEPARTM		zation Test - ICP	,				
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE			
95-07941-H1T	BY-108, C99, Segment 1-Top	CEL	91-95	DES.	9-1-95			
95-07941-H2T	BY-108, C99, Segment 1-Top Dup							
95-07941-HCB	Methods Blank							
95-07941-H1B	BY-108, C99, Segment 1-Bottom							
95-07941-H2B	BY-108, C99, Segment 1- Bottom Dup	J	J	\bigcup				
			+					
			 					
		 	1					
								
				 	<u> </u>			

WHC-SD-WM-DP- /45 REV /

THE SE WINDS THE THE T									
Page 1 of 1	Chain of Custody NumberTWC-47								
ACL CHAIN OF CUSTODY									
SAMPLE DESCRIPTION Tank BY-108, Core 99, Segment 1 ORIGINATOR SAL									
APPLICABLE TES	ST INSTRUCTION TI	95-TWC-02							
ANALYSIS REQU	ESTED OR DEPARTM	MENT <u>Homogen</u>	ization Test - GE	A	·				
PREP METHOD	Ni/KOH Fusio	on							
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE				
95-07941-H1T	BY-108, C99, Segment 1-Top	CE	9-1-95	X Poppel	9/1/95				
95-07941-H2T	BY-108, C99, Segment 1-Top Dup								
95-07941-HCB	Methods Blank								
95-07941-H1B	BY-108, C99, Segment 1-Bottom								
95-07941-H2B	BY-108, C99, Segment 1- Bottom Dup	J	1	Jup 19/1/85	Kep 3/145				
			<u> </u>						
**									
			 						
			 						

Page 1 of 1	ge 1 of 1 Chain of Custody Number TWC-48 ACL CHAIN OF CUSTODY								
SAMPLE DESCRI	PTION Tank BY-108.	Core 99, Ouarter Se	gment 4B	ORIGI	NATOR <u>SAL</u>				
APPLICABLE TES	ST INSTRUCTION I	95-TWC-02							
analysis requ	ESTED OR DEPARTI	MENT <u>Homogeni</u>	zation Test - ICI	·					
PREP METHOD	Ni/KOH Fusio	on							
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE				
95-07946-H1T	BY-108, C99, Qtr Segment 4B Top	CEC	9-1-95	DKS.	9-1-95				
95-07946-H2T	BY-108, C99, Qtr Segment 4B Top Dup								
95-07946-HCB	Methods Blank								
95-07946-H1B	BY-108, C99, Qtr Segment 4B Bottom								
95-07946-H2B	BY-108, C99, Qtr Segment 4B Bottom Dup	J	1		V				
	ļ		<u> </u>						

Page 1 of 1 Chain of Custody Number TWC-49 ACL CHAIN OF CUSTODY								
SAMPLE DESCRI	PTION Tank BY-108.	Core 99, Ouarter Se	gment 4B	ORIGI	NATOR <u>SAL</u>			
APPLICABLE TES	ST INSTRUCTION TI	95-TWC-02						
ANALYSIS REQU	ESTED OR DEPARTI	MENT Homogeni	zation Test - GE					
PREP METHOD _	Ni/KOH Fusio	n						
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE			
95-07946-H1T	BY-108, C99, Qtr Segment 4B Top	080	9-1-85	LaPospal	9-1-95			
95-07946-H2T	BY-108, C99, Qtr Segment 4B Top Dup) 			
95-07946-HCB	Methods Blank							
95-07946-H1B	BY-108, C99, Qtr Segment 4B Bottom							
95-07946-H2B	BY-108, C99, Qtr Segment 4B Bottom Dup	√	\		رل			
		· 						
		·						
			ļ 1					

Page 1 of 1 Chain of Custody Number									
ACL CHAIN OF CUSTODY									
SAMPLE DESCRI	PTION Tank BY-108.	Core 99. Segment	1 and Otr Segmen	nt 4B ORIGI	NATOR SAL				
APPLICABLE TES	ST INSTRUCTION II	95-TWC-02							
ANALYSIS REQU	JESTED OR DEPARTM	MENT Homogen	ization Test - ICF						
PREP METHOD	HNO3-HÇI A	cid Digestion							
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE				
95-07941-H1T	BY-108, C99, Segment 1 Top	Cze	9-1-95	DRS	9-1-95				
95-07941-H2T	BY-108, C99, Segment 1 Top Dup	1							
95-07941-HCB	Methods Blank				_				
95-07946-HIT	BY-108, C99, Qtr Segment 4B Top				<u></u>				
95-07946-H2T	BY-108, C99, Qtr Segment 4B Top Dup	1	4						
		 		_					
		<u> </u>							

Original - Project Management

Copy - Sender Copy - Receiver

•

Page 1 of 1	Chain of Custody NumberTWC-52							
ACL CHAIN OF CUSTODY								
SAMPLE DES	SCRIPTION Tank BY-108, Core	99		ORIGI	NATOR <u>SAL</u>			
APPLICABLE	TEST INSTRUCTION T195-TW	VC-03						
ANALYSIS RI	EQUESTED OR DEPARTMENT	ICP						
PREP METHO			•		·			
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	* RECEIVER	DATE			
95-07941-C1	BY108, C99, S1	Z	9/8/95	DES	9/8/95-			
95-07941-C2	BY108, C99, S1, Dup	0180	\		9/8/95			
95-07941-C3	Method Blank	Also.			\			
95-07942-C1	BY108, C99, Qtr Seg 2A	Sta						
95-07942-C2	BY108,C99,Qtr Seg 2A Dup	Fra						
95-07943-CI	BY108, C99 Qtr Seg 2D	TC4						
95-07943-C2	BY108, C99 Qtr Seg 2D Dup	ADO						
95-07944-C1	BY108, C99, Qtr Seg 3A	J.Co.	1					
95-07944-C2	BY108,C99,Qtr Seg 3A Dup	allo						
95-07945-C1	BY108, C99, Qtr Seg 4A	gus						
95-07945-C2	BY108,C99, Qtr Seg 4A Dup	olex						
95-07946-C1	BY108, C99, Qtr Seg 4B	Als						
95-07946-C2	BY108,C99, Qtr Seg 4B Dup	also						
95-07947-C1	BY108, C99, Qtr Seg 4C	ans						
95-07947-C2	BY108,C99, Qtr Seg 4C Dup	200						
95-07948-C1	BY108, C99, Qtr Seg 4D	aux						
95-07948-C2	BY108,C99, Qtr Seg 4D Dup	200		J	V			

Original - Project Management Copy - Sender

Copy - Receiver

				<u>. ————————————————————————————————————</u>					
Page 1 of 1 Chain of Custody Number									
ACL CHAIN OF CUSTODY									
	·								
SAMPLE DESC	RIPTION Tank BY-108, Core S	99		_		ORIGI	NATO	R <u>SAL</u>	
APPLICABLE	TEST INSTRUCTION T195-TW	/C-03							
ANALYSIS RE	QUESTED OR DEPARTMENT	_IC					_		
PREP METHO									
PREP METHO	Water Leach								
ACL	SAMPLE	SENDER	D.	ATE	REC	EIVER	D	ATE	
SAMPLE NUMBER	DESCRIPTION								
95-07941-C1	BY108, C99, S1	~7 26	9/2	195-	m	m.o	9-7	-95	
95-07941-C2	BY108, C99, S1, Dup	M	177-27			!- <u>!</u> :\2			
95-07941-C3	Method Blank	Att.	11						
95-07941-C4	Matrix Spike	an		\					
95-07941-C5	Blank Spike	SHO		<u> </u>					
95-07942-C1	BY108, C99, Qtr Seg 2A	att		<u> </u>		<u></u>			
95-07942-C2	BY108,C99,Qtr Seg 2A Dup	SUE		<u> </u>		<u></u>	<u> </u>		
95-07943-C1	BY108, C99 Qtr Seg 2D	Sto	<u> </u>				_		
95-07943-C2	BY108, C99 Qtr Seg 2D Dup	Jas		<u> </u>			ļ		
95-07944-C1	BY108, C99, Qtr/Seg 3A	W.	<u> </u>		ļ		ļ. 		
95-07944-C2	BY108,C99,Qtr Seg 3A Dup	Stat	<u> </u>		ļ				
95-07945-C1	BY108, C99, Qtr Seg 4A	aus		ļ	<u> </u>				
95-07945-C2	BY108,C99, Qtr Seg 4A Dup	gar		ļ	↓		1		
95-07946-C1	BY108, C99, Qtr Seg 4B	allo	<u> </u>		ļ		1		
95-07946-C2	BY108,C99, Qtr Seg 4B Dup	500	<u>.</u>	 	 			,	
95-07947-C1	BY108, C99, Qtr Seg 4C	all		 	ļ				
95-07947-C2	BY108,C99, Qtr Seg 4C Dup	THE		 		. <u> </u>	 -	 	
95-07948-C1	BY108, C99, Qtr Seg 4D	7775	1	l			1.	<u> </u>	

Original - Project Management Copy - Sender

BY108,C99, Qtr Seg 4D Dup

Copy - Receiver

	THIO OS THE								
Page 1 of 1	Chain of Custody Number <u>TWC-54</u>								
ACL CHAIN OF CUSTODY									
SAMPLE DESC	RIPTION Tank BY-108, Core	99		ORIGI	NATOR <u>SAL</u>				
APPLICABLE T	EST INSTRUCTION T195-TW	/C-03							
ANALYSIS REC	QUESTED OR DEPARTMENT	ICP			_				
PREP METHOD	Ni/KOH Fusion								
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE				
95-07941-HIT	BY108, C99, S1 Top	Alto	9/12/95-	· PKS	9/12/95				
95-07941-H2T	BY108, C99, S1 Top Dup	Tito			1.0.1.40.12				
95-07941-HCB	Method Blank	Jet			 				
95-07942-H1	BY108,C99, Qtr Seg 2A	Gla							
95-07942-H2	BY108,C99,Qtr Seg 2A Dup	SU 8							
95-07942-H3	Method Blank	Alto			· · · · · · · · · · · · · · · · · · ·				
95-07943-H1	BY108,C99,Qtr Seg 2D	Tho							
95-07943-H2	BY108,C99,Qtr Seg 2D Dup	da							
95-07944-H1	BY108,C99 Qtr Seg 3A	WW.			·				
95-07944-H2	BY108,C99,Qtr Seg 3A Dup	Tur							
SRM-2709-H	Standard Reference Material	TUX	\downarrow	<u> </u>	<u> </u>				

************		* * * * * - * - * - * - * - * - * - * -							
	·								
			t						

Page 1 of 1 Chain of Custody Number								
SAMPLE DESCRIPTION Tank BY-108, Core 99 ORIGINATOR SAL								
APPLICABLE T	EST INSTRUCTION TI95-TW	C-03						
ANALYSIS REC	QUESTED OR DEPARTMENT	_ICP						
PREP METHOD	Ni/KOH Fusion							
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE			
95-07945-H1	BY108, C99, Qtr Seg 4A	Sto	9/12/95	AUS	9/12/95			
95-07945-H2	BY108,C99,Qtr Seg 4A Dup		1					
95-07945-H3	Method Blank							
95 - 07946-H1T	BY108,C99,Qtr Seg 4B Top							
95-07946-H2T	BY108,C99,Qtr Seg 4B Top Dup	SVX.						
95-07946-HCB	Method Blank	<u>}</u>						
95-07947-H1	BY108,C99,Qtr Seg 4C							
95-07947-H2	BY108,C99,Qtr Seg 4C Dup							
95-07948-H1	BY108,C99 Qtr Seg 4D							
95-07948-H2	BY108,C99,Qtr Seg 4D Dup	<u> </u>						
SRM-2709-H	Standard Reference Material	Gla	<u> </u>	<u> </u>	<u> </u>			
			<u> </u>					
	·							
			<u></u>					

Page 1 of 1	Chain of Custody NumberTWC-56 ACL CHAIN OF CUSTODY								
SAMPLE DESCRIPTION Tank BY-108, Core 99 ORIGINATOR SAL									
APPLICABLE T	EST INSTRUCTION T195-TW	/C-03	··············						
ANALYSIS REC	QUESTED OR DEPARTMENT	ICP							
	Zr/Na202 Fusion								
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE				
95-07941-N1	BY108, C99, Segment 1	TOX.	9/12/95	DKI	9/12/58				
95-07941-N2	BY108,C99, Segment 1 Dup	//	١		1				
95-07941-N3	Method Blank								
95 07942 N1	BY108, C99, Qtr Seg 2A	- RT59-11-95							
95-07943-N1	BY108, C99, Qtr Seg 2D								
95-07944-N1	BY108, C99, Qtr Seg 3A								
95-07945-N1	BY108, C99, Qtr Seg 4A								
95-07946-N1	BY108, C99, Qtr Seg 4B								
95-07947-N1	BY108, C99, Qtr Seg 4C								
95-07948-N1	BY108, C99, Qtr Seg 4D								
SRM-2709-N	Standard Reference Material	V	\downarrow		<u>\</u>				

Page 1 of 1 Chain of Custody Number <u>TWC-57</u> ACL CHAIN OF CUSTODY							
SAMPLE DESCRIPTION Tank BY-108, Core 99 ORIGINATOR SAL APPLICABLE TEST INSTRUCTION T195-TWC-03 ANALYSIS REQUESTED OR DEPARTMENT ICP-Drainable Liquid PREP METHOD Acid Digest							
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE		
95-07932-A1	BY108, C99, Segment 1	Alle	9/11/95	OKarke	9/11/95		
95-07932-A2	BY108,C99, Segment 1 Dup				ĺ		
95-07932-A3	Method Blank						
95-07932-A4	Matrix Spike						
95-07932-A5	Spike Control						
95-07935-A1	BY108, C99, Segment 3						
95-07935-A2	BY108,C99, Segment 3 Dup		<u> </u>	<u> </u>	سلا		

Page 1 of 1 Chain of Custody NumberTWC-58 ACL CHAIN OF CUSTODY								
SAMPLE DESC	RIPTION Tank BY-108, Core	99		ORIGI	NATOR <u>SAL</u>			
APPLICABLE T	TEST INSTRUCTION T195-TW	VC-03						
ANALYSIS REG	QUESTED OR DEPARTMENT	IC-Drainable	Liquid					
	Water Leach		·		 ,			
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE			
95-07932-C1	BY108, C99, Segment I	Alto	9/8/95	mmo	9-8-95			
95-07932-C2	BY108,C99, Segment 1 Dup	Ato	7-7]	Γ			
95-07932-C3	Method Blank	Alte	T/					
95-07932-C4	Matrix Spike	Jos	/					
95-07932-C5	Spike Control	Alto	/					
95-07935-C1	BY108, C99, Segment 3	Det-						
95-07935-C2	BY108,C99, Segment 3 Dup	8705	1					
					-			
			·					
		*						

	**							
			,					
		*						
		~~~~~~~	,					

Page 1 of 1	Chain of Custody Number				
ACL CHAIN OF CUSTODY					
SAMPLE DESC	RIPTION Tank BY-108, Core	99		ORIGI	NATOR <u>SAL</u>
APPLICABLE T	EST INSTRUCTION T195-TW	/C-03			
ANALYSIS REG	QUESTED OR DEPARTMENT	ICP-Drainabl	e Liquid		
PREP METHOD	Water Leach				
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE
95-07932-C1	BY108, C99, Segment 1	all	9/8/95	R.KS	9/8/95
95-07932-C2	BY108,C99, Segment 1 Dup	gro	<b>,</b> )		
95-07932-C3	Method Blank	gas			
95-07935-C1	BY108, C99, Segment 3	400			
95-07935-C2	BY108,C99, Segment 3 Dup	200	<u> </u>	<u> </u>	14-
}			<b>_</b>		
			ļ		
		 	<b>_</b>		
		<u> </u>			 
			<del></del>		
	 	<u> </u>	<b></b>		<b></b>

## WHC-SD-WM-DP-<u>145</u>, REV.<u>/</u>

		**************************************		<del></del>		
Page 1 of 1	Chain of Custody NumberTWC-60					
·	ACL C	CHAIN OF C	USTODY			
SAMPLE DESC	RIPTION Tank BY-108, Core	99		ORIGI	NATOR <u>SAL</u>	
APPLICABLE 1	TEST INSTRUCTION TI95-TW	VC-03				
ANALYSIS RE	QUESTED OR DEPARTMENT	Total Alpha	Total Beta, GEA	A - Drainable Ligu	id	
	Acid Digest				· · · · ·	
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE	
95-07932-A1	BY108, C99, Segment 1	140	9/11/95-	640	9/4/55	
95-07932-A2	BY108,C99, Segment 1 Dup	AR.	<u> </u>	Los	)	
95-07932-A3	Method Blank	Alto		Too		
95-07935-A1	BY108, C99, Segment 3	SIDO		( Sep		
95-07935-A2	BY108,C99, Segment 3 Dup	Sto	$\perp$	Lap		
			ļ			
			+			
					*****	

# 

Page 1 of 1 Chain of Custody Number						
ACL CHAIN OF CUSTODY						
RIPTION Tank BY-108, Core 9	9		ORIGI	NATOR <u>SAL</u>		
EST INSTRUCTION TI95-TW	C-03					
UESTED OR DEPARTMENT	Total Alpha,	Alpha/AEA, GEA	. Total Beta, Sr-90	. U/Laser		
Ni/KOH Fusion	<del></del>					
SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE		
BY108, C99, Segment 1	<i>30</i> 0	9/12/95	Kyp	9/12/85		
BY108,C99, Segment 1 Dup						
Method Blank			<u> </u>			
BY108, C99, Qtr Seg 2A						
BY108,C99,Qtr Seg 2A Dup		<u> </u>				
Method Blank						
BY108, C99, Qtr Seg 2D	<u> </u>					
BY108,C99,Qtr Seg 2D Dup						
BY108, C99, Qtr Seg 3A			<u> </u>			
BY108,C99,Qtr Seg 3A Dup		<u> </u>	<u></u>	1/		
	ļ					
	ļ			<b></b>		
	EST INSTRUCTION T195-TW DUESTED OR DEPARTMENT Ni/KOH Fusion  SAMPLE DESCRIPTION  BY108, C99, Segment 1  BY108, C99, Segment 1 Dup Method Blank BY108, C99, Qtr Seg 2A BY108, C99, Qtr Seg 2A Dup Method Blank BY108, C99, Qtr Seg 2D BY108, C99, Qtr Seg 2D BY108, C99, Qtr Seg 2D Dup BY108, C99, Qtr Seg 3A	ACL CHAIN OF CURTION Tank BY-108, Core 99  EST INSTRUCTION TI95-TWC-03  EUESTED OR DEPARTMENT Total Alpha, A Ni/KOH Fusion  SAMPLE DESCRIPTION  BY108, C99, Segment 1  BY108, C99, Segment 1 Dup  Method Blank BY108, C99, Qtr Seg 2A BY108, C99, Qtr Seg 2A Dup  Method Blank BY108, C99, Qtr Seg 2D  BY108, C99, Qtr Seg 2D  BY108, C99, Qtr Seg 2D Dup  BY108, C99, Qtr Seg 3A	ACL CHAIN OF CUSTODY  SUPTION Tank BY-108, Core 99  EST INSTRUCTION TI95-TWC-03  EUESTED OR DEPARTMENT Total Alpha, Alpha/AEA, GEA  Ni/KOH Fusion  SAMPLE DESCRIPTION  BY108, C99, Segment 1 BY108,C99, Segment 1 Dup  Method Blank BY108, C99, Qtr Seg 2A BY108,C99,Qtr Seg 2A Dup  Method Blank BY108, C99, Qtr Seg 2D BY108,C99,Qtr Seg 2D Dup  BY108,C99,Qtr Seg 2D Dup  BY108,C99,Qtr Seg 2D Dup  BY108,C99,Qtr Seg 3A	### ACL CHAIN OF CUSTODY    CORRECTION   Tank BY-108, Core 99		

Original - Project Management

Copy - Sender Copy - Receiver

Chain of Custody NumberTWC-62								
ACL C	HAIN	I <b>OF</b> CU	<i>isto</i>	DΥ				
RIPTION Tank BY-108, Core	99			<del></del>		ORIGI	NATC	R SAL
EST INSTRUCTION <u>T195-TW</u>	/C-03							
		IAlnha A	Inha//	AFA GEA	Total	Rate St-9(	) II/I /	<b></b>
Ni/KOH Fusion			ilpire .	<u>11473, V47, </u>	<u>, 10m.</u>	Deia, V. Z.	<u>. V</u>	Sei
SAMPLE DESCRIPTION	SE	NDER	I	DATE	REC	EIVER	Œ	ATE
BY108, C99, Qtr Seg 4A	A	10	9/1	2/95	K	21	91	12/45
BY108,C99,Qtr Seg 4A Dup						39×-1		LOY-EX
Method Blank		1	<b></b>					1
BY108, C99, Qtr Seg 4B				<u> </u>				
BY108,C99,Qtr Seg 4B Dup				<b>[</b> ]				
Method Blank								
BY108, C99, Qtr Seg 4C								
BY108,C99,Qtr Seg 4C Dup								
BY108, C99, Qtr Seg 4D								
BY108,C99,Qtr Seg 4D Dup	1	/	<u>[</u> ]	Y	J	/		)
			<u></u>				L	
			<b></b>		L			
					L		L	
		,	1	. 1	i	ı	i	J
			<b></b>	,	******		·	
							,	
(	RIPTION Tank BY-108, Core STEST INSTRUCTION TI95-TW QUESTED OR DEPARTMENT Ni/KOH Fusion  SAMPLE DESCRIPTION  BY108, C99, Qtr Seg 4A BY108, C99, Qtr Seg 4A Dup Method Blank BY108, C99, Qtr Seg 4B BY108, C99, Qtr Seg 4B Dup Method Blank BY108, C99, Qtr Seg 4C BY108, C99, Qtr Seg 4C BY108, C99, Qtr Seg 4C Dup BY108, C99, Qtr Seg 4C	RIPTION Tank BY-108, Core 99  TEST INSTRUCTION TI95-TWC-03  QUESTED OR DEPARTMENT Total  Ni/KOH Fusion  SAMPLE DESCRIPTION  BY108, C99, Qtr Seg 4A  BY108, C99, Qtr Seg 4A Dup  Method Blank  BY108, C99, Qtr Seg 4B  BY108, C99, Qtr Seg 4B Dup  Method Blank  BY108, C99, Qtr Seg 4B Dup  Method Blank  BY108, C99, Qtr Seg 4C  BY108, C99, Qtr Seg 4C  BY108, C99, Qtr Seg 4C  BY108, C99, Qtr Seg 4D	ACL CHAIN OF CURIPTION Tank BY-108, Core 99  TEST INSTRUCTION TI95-TWC-03  QUESTED OR DEPARTMENT Total Alpha, A Ni/KOH Fusion  SAMPLE DESCRIPTION  BY108, C99, Qtr Seg 4A  BY108, C99, Qtr Seg 4A Dup  Method Blank  BY108, C99, Qtr Seg 4B Dup  Method Blank  BY108, C99, Qtr Seg 4B Dup  Method Blank  BY108, C99, Qtr Seg 4C  BY108, C99, Qtr Seg 4C  BY108, C99, Qtr Seg 4C  BY108, C99, Qtr Seg 4D	ACL CHAIN OF CUSTO  RIPTION Tank BY-108, Core 99  EST INSTRUCTION TI95-TWC-03  QUESTED OR DEPARTMENT Total Alpha, Alpha/A  Ni/KOH Fusion  SAMPLE DESCRIPTION  BY108, C99, Qtr Seg 4A  BY108, C99, Qtr Seg 4A Dup  Method Blank  BY108, C99, Qtr Seg 4B Dup  Method Blank  BY108, C99, Qtr Seg 4B Dup  Method Blank  BY108, C99, Qtr Seg 4C  BY108, C99, Qtr Seg 4C  BY108, C99, Qtr Seg 4C  BY108, C99, Qtr Seg 4D	ACL CHAIN OF CUSTODY  RIPTION Tank BY-108, Core 99  TEST INSTRUCTION T195-TWC-03  QUESTED OR DEPARTMENT Total Alpha, Alpha/AEA, GEA  Ni/KOH Fusion  SAMPLE DESCRIPTION  BY108, C99, Qtr Seg 4A  BY108, C99, Qtr Seg 4A Dup  Method Blank  BY108, C99, Qtr Seg 4B Dup  Method Blank  BY108, C99, Qtr Seg 4C  BY108, C99, Qtr Seg 4C  BY108, C99, Qtr Seg 4C  BY108, C99, Qtr Seg 4D	### ACL CHAIN OF CUSTODY  ###################################	### ACL CHAIN OF CUSTODY  RIPTION Tank BY-108, Core 99 ORIGINATION TI95-TWC-03  QUESTED OR DEPARTMENT Total Alpha, Alpha/AEA, GEA, Total Beta, Sr-90  Ni/KOH Fusion    SAMPLE DESCRIPTION	### ACL CHAIN OF CUSTODY  RIPTION Tank BY-108, Core 99 ORIGINATO  EST INSTRUCTION T195-TWC-03  QUESTED OR DEPARTMENT Total Alpha, Alpha/AEA, GEA, Total Beta, Sr-90, U/La  **Ni/KOH Fusion**    SAMPLE

Page 1 of 1	of 1 Chain of Custody Number <u>TWC-63</u> ACL CHAIN OF CUSTODY					
APPLICABLE 1	RIPTION Tank BY-108, Core TEST INSTRUCTION T195-TY QUESTED OR DEPARTMENT  Microdistillation	99 WC-03		ORIG	GINATOR <u>SAL</u>	
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE	
95-07932-G1	BY108, C99, Seg 2 Drainable Liquid	Atto	9-14-95	MMO	9-14-95	
95-07932-G2	BY108,C99, Seg 2 Drainable Liquid Dup	/				
95-07932-G3	Method Blank					
95-07932-G4	Matrix Spike					
95-07932-G5	Spike Control	T				
95-07935-G1	BY108, C99, Seg 3 Drainable Liquid					
95-07935-G2	BY108, C99, Seg 3 Drainable Liquid Dup				V	

Page 1 of 1	Page 1 of 1 Chain of Custody Number					
ACL CHAIN OF CUSTODY						
SAMPLE DESC	RIPTION Tank BY-108, Core	99	··-·	ORIG	GINATOR SAL	
APPLICABLE TEST INSTRUCTION T195-TWC-03						
ANALYSIS REG	QUESTED OR DEPARTMENT	Cvanide - So	olids			
PREP METHOD						
ACL SAMPLE NUMBER	SAMPLE DESCRIPTION	SENDER	DATE	RECEIVER	DATE	
95-07941-G1	BY108, C99, Seg 1	THE	9/14/95	mno	9-14-95	
95-07941-G2	BY108,C99, Seg 1 Dup		//////	1	1	
95-07941-G3	Method Blank	I I	1		T	
95-07941-G4	Matrix Spike		T		<b></b>	
95-07941-G5	Spike Control	IJ	T			
95-07942-G1	BY108, C99, Seg 2A	TOO				
95-07942-G2	BY108, C99, Seg 2A					
95-07943-G1	BY108, C99, Seg 2D		7			
95-07943-G2	BY108, C99, Seg 2D Dup					
95-07944-G1	BY108, C99, Seg 3A					
95-07944-G2	BY108, C99, Seg 3A Dup	2000				
95-07945-G1	BY108, C99, Seg 4A					
95-07945-G2	BY108, C99, Seg 4A Dup					
95-07946-G1	BY108, C99, Seg 4B					
95-07946-G2	BY108, C99, Seg 4B Dup					
95-07947-G1	BY108, C99, Seg 4C					
95-07947-G2	BY108, C99, Seg 4C Dup					
95-07948-G1	BY108, C99, Seg 4D		T			
95-07948-G2	BY108, C99, Seg 4D Dup	200		V		

# **A4 - TEST INSTUCTIONS**

TI95-TWC-01 Page 1 of 4

#### TANK CHARACTERIZATION TEST INSTRUCTIONS FOR HLRF RECEIPT AND ANALYSES OF SST 241-BY-108, CORE 99 SEGMENTS 1-4

DATE PREPARED: August 23, 1995

PREPARED BY: KL Silvers

SAMPLE NUMBERS: 95-07931

CONTROLLING DOCUMENTS: Project No: 21372

WHC TCP: Tank 241-BY-108 Tank Characterization Plan (WHC-SD-WM-TP-275) Revision OE - ECN No: 6621348 (August, 1995) PNL QAP: MCS-033, Revision 2 (April, 1995) Controlling Procedure: PNL-ALO-010

#### **INTRODUCTION**

This Test Instruction (TI) defines the scope of work to be completed on Single-Shell Tank (SST) 241-BY-108. Core 99 Segments 1, 2, 3 and 4. The samples from this tank will be analyzed according to TCP (WHC-SD-WM-TP-275 Rev. OE).

The subsampled tank material from WHC will be analyzed as-received for TGA (on unhomogenized tank material subsamples and an aliquot from each of the two drainable liquid samples). In addition, DSC and bulk density will be required on the homogenized samples.

Homogenization will be conducted on all non-TGA sample material. A homogenization check will be performed on Segment 1 and Quarter-Segment 4B. An aliquot of homogenized sample material will be removed and transferred to the Shielded Analytical Laboratory (SAL) for preparation of the homogenization check samples. An ICP and GEA analysis will be conducted to evaluate the homogenization process. If the analytical results indicate the sample to be non-homogenized, another attempt will be made to homogenize prior to performing any analytical determination.

Homogenized sample material will be transferred to the SAL for preparation and distribution to the analytical laboratories to complete the scope of work.

Sample receiving and homogenization activities should be charged against work package K28859 and K28860, respectively.

All activities identified in this Test Instruction shall be charged against Project 21372. All analyses are to be completed at Impact Level 2. All analyses are to be completed following the identified procedures. Any deviations to the procedures must be documented and this documentation must accompany the analytical data. All analytical data are returned to the Laboratory Support Office.

#### REQUESTED ANALYSES

Requested Analysis		Procedure Number	WP#
TGA	unhomogenized sample	PNL-ALO-508	K28861
DSC	homogenized subsample	PNL-ALO-508	K28861
Bulk Density	homogenized subsample	PNL-ALO-501	K28865

#### A-HOT CELL SAMPLE INSTRUCTIONS

- All analyses should be performed in duplicate if adequate sample is available. If adequate sample is not available, document and notify the
- Collect a TGA sample aliquot from each of the two drainable liquid samples (i.e. Segment 2 and Segment 3).
- Perform TGA analyses on the unhomogenized solid and liquid samples.
- All other samples should be homogenized. In the event insufficient sample exist to perform the traditional homogenization, a best effort
- should be made to thoroughly mix the material prior to analysis.

  A homogenization check will be conducted on Segment 1 and QuarterSegment "B" from Segment 4 (i.e. 4B). Collect homogenization check samples from the top and bottom (approx.) 3 grams) and transfer to the SAL. No further testing shall be conducted until results of the homogenization check are reviewed and results deemed valid.
- The ACL sample numbers should be assigned as follows:

CORE IDENTIFICATION	ACL NUMBER
Core 99 - Segment 1 (TGA-unhomogenized) Core 99 - Segment 1	95-07931 95-07941
Core 99 - Segment 2 (liquid and subsample liquid for TGA) Core 99 - Quarter-Segment 2A (TGA-unhomogenized) Core 99 - Quarter-Segment 2D (TGA-unhomogenized) Core 99 - Quarter-Segment 2A (homogenized) Core 99 - Quarter-Segment 2D "	95-07932 95-07933 95-07934 95-07942 95-07943
Core 99 - Segment 3 (liquid and subsample liquid for TGA)	95-07935

	TI95-TWC-01 Page 3 of 4
CORE IDENTIFICATION	ACL_NUMBER
Core 99 - Quarter-Segment 3A (TGA-unhomogenized)	95-07936
Core 99 - Quarter-Segment 3A (homogenized)	95-07944
Core 99 - Quarter-Segment 4A (TGA-unhomogenized)	95-07937
Core 99 - Quarter-Segment 4B (TGA-unhomogenized)	95-07938
Core 99 - Quarter-Segment 4C (TGA-unhomogenized)	95-07939
Core 99 - Quarter-Segment 4D (TGA-unhomogenized)	95-07940
CORE IDENTIFICATION	ACL_NUMBER
Core 99 - Quarter-Segment 4A (homogenized)	95-07945
Core 99 - Quarter-Segment 4B "	95-07946
Core 99 - Quarter-Segment 4C "	95-07947
Core 99 - Quarter-Segment 4D "	95-07948

## Tank BY-108 Core 99 Sample Identification

TI95-TWC-01 Page 4 of 4

	WHC Sample Number	ACL Number	Sample Description	Sample Volume
Segment 1	Vial # 7313	95-07931	Unhomogenized TGA Sample	3.3 g
	Jar # 7504	95-07941	Segment 1 Solids	53.1 g
Segment 2	Jar # 7397	95-07932	Drainable Liquid	230 mL
	Jar # 7397	95-07932	Drainable Liquid - TGA Subsample	TBD
ŀ	VIal # 7315	95-07933	QS-2A TGA Sample	1.9 g
	VIal # 7314	95-07934	QS-2D TGA Sample	4.0 0
	Jar # 7506	95-07942	QS-2A Solids	7.1 g
	Jar # 7505	95-07943	QS-2D Solids	24.0 g
Segment 3	Jar # 7398	95-07935	Drainable Liquid	25 mL
	Jor # 7398	95-07935	Drainable Liquid - TGA Subsample	TBD
į	Vlai # 7316	95-07936	QS-3A TGA Sample	3.5 g
·	Jar # 7379	95-07944	QS-3A Solids	18.9 g
Segment 4	Vial # 7322	95-07937	QS-4A TGA Sample	4.0 g
	VIal # 7319	95-07938	QS-4B TGA Sample	4.3 g
	Vial # 7318	95-07939	QS-4C TGA Sample	4.6 g
	VIal # 7317	<b>95</b> -07940	QS-4D TGA Sample	5.3 g
<b>,</b>	Jar # 7478	95-07945	QS-4A Solids	TBD
	Jar # 7476	95-07946	QS-4B Solids	TBD
	Jar # 7400	95-07947	QS-4C Solids	TBD
	Jar # 7399	95-07948	QS-4D Solids	TBD

CONTROLLED DOCUMENT COPY NO. _ O /

TI95-TWC-02 PAGE 1 OF 2

TANK CHARACTERIZATION
TEST INSTRUCTIONS FOR HOMOGENIZATION CHECK OF
SST 241-BY-108, CORE 99 SEGMENT 1 AND QUARTER-SEGMENT 4B

DATE PREPARED: August 23, 1995

PREPARED BY: KL Silvers

SAMPLE NUMBERS: 95-07941 & 95-07946

APPROVED BY: Kent Silvers

DATE: 8/25/95

CONTROLLING DOCUMENTS: Project No: 21372

WHC TCP: Tank 241-BY-108 Tank Characterization Plan (WHC-SD-WM-TP-275)

Revision OE - ECN No: 6621348 (August, 1995) PNL QAP: MCS-033, Revision 2 (April, 1995)

Controlling Procedure: PNL-ALO-010

#### INTRODUCTION

This Test Instruction (TI) defines the scope of work to be completed on Single-Shell Tank (SST) 241-BY-108. Core 99 Segment 1 and Quarter-Segment 4B homogenization check samples. The samples from this tank will be analyzed according to TCP (WHC-SD-WM-TP-275 Rev. OE).

All activities identified in this Test Instruction shall be charged against Project 21372. All analyses are to be completed at Impact Level 2. All analyses are to be completed following the identified procedures. Any deviations to the procedures must be documented and this documentation must accompany the analytical data. All analytical data are returned to the Laboratory Support Office.

#### SAL SAMPLE PREPARATION FOR HOMOGENIZATION CHECK:

Duplicate fusions should be completed for each of the two homogenization check samples. The samples will be distributed for both ICP and GEA. A single Methods Blank is required per batch.

Caustic Fusion

(WPkg K28863)

PNL-ALO-115

(QC Requirements: Duplicate, Blank)

Perform duplicate acid digestions via PNL-ALO-129 for visual confirmation of sample solubility.

#### REQUESTED ANALYSES FOR HOMOGENIZATION CHECK:

Requested Analysis	Procedure Number	<u>Task Leader</u>	<u> WP#</u>
ICP (Fusion)	PNL-ALO-211	Urie	K28866
GEA (Fusion)	PNL-ALO-450	Greenwood	K28872

T195-TWC-02 PAGE 2 OF 2

#### SAMPLE IDENTIFICATION SYSTEM FOR HOMOGENIZATION CHECK:

(

Segment 1 Quarter-Segmen		
95-07946-H1T 95-07946-H2T 95-07946-HCB 95-07946-H2B	Sample - Top Duplicate - Top Methods Blank Sample - Bottom Duplicate - Bottom	
	95-07946-H2T 95-07946-HCB	

# CONTROLLED DOCUMENT

WHC-SD-WM-DP- (45, REV. (

TI95-TWC-03 Rev 1 PAGE 1 OF 7

TANK CHARACTERIZATION
TEST INSTRUCTIONS FOR ANALYSES OF
SST 241-BY-108, CORE 99 SEGMENTS 1-4

DATE PREPARED: September 12. 1995 PREPARED BY: KL Silvers

SAMPLE NUMBERS: 95-07931 - 95-07948

APPROVED BY: Tul Silve DATE: 9/12/95

CONTROLLING DOCUMENTS: Project No: 21372

WHC TCP: Tank 241-BY-108 Tank Characterization Plan (WHC-SD-WM-TP-275)

Revision OE - ECN No: 6621348 (August, 1995) PNL QAP: MCS-033, Revision 2 (April, 1995)

Controlling Procedure: PNL-ALO-010

#### INTRODUCTION

This Test Instruction (TI) defines the scope of work to be completed on Single-Shell Tank (SST) 241-BY-108, Core 99 Segments 1, 2, 3 and 4. The samples from this tank will be analyzed according to TCP (WHC-SD-WM-TP-275 Rev. OE).

This TI contains instructions for the preparation and analyses by the ACL of all segments, quarter-segments, and drainable liquids from Core 99.

All activities identified in this Test Instruction shall be charged against Project 21372. All analyses are to be completed at Impact Level 2. All analyses are to be completed following the identified procedures. Any deviations to the procedures must be documented and this documentation must accompany the analytical data. All analytical data are returned to the Laboratory Support Office.

#### SAL SAMPLE PREPARATION INSTRUCTIONS FOR SEGMENTS AND QUARTER-SEGMENTS:

The following tank material samples were transferred from the HLRF:

CORE IDENTIFICATION	<u>ACL NUMBER</u>
Core 99 - Segment 1 (homogenized, mechanical)	95-07941
Core 99 - Segment 2 (drainable liquid)	95-07932
Core 99 - Quarter-Segment 2A (homogenized, manual)	95-07942
Core 99 - Quarter-Segment 2D (homogenized, manual)	95-07943
Core 99 - Segment 3 (drainable liquid)	95-07935
Core 99 - Quarter-Segment 3A (homogenized, manual)	95-07944

WHC-SD-WM-DP145_, REV	
4110-00-4141-01 - 173-, 1164-1	TI95-TWC-03 Rev 1 PAGE 2 OF 7
CORE IDENTIFICATION	ACL NUMBER
Core 99 - Quarter-Segment 4A (homogenized, mechanical) Core 99 - Quarter-Segment 4B (homogenized, mechanical) Core 99 - Quarter-Segment 4C (homogenized, mechanical) Core 99 - Quarter-Segment 4D (homogenized, mechanical)	95-07945 95-07946 95-07947 95-07948
The following sample preparation steps are required:	
<u>Method</u>	<u>Procedure</u>
Acid Digestion for ICP - liquid (WPkg K28862) (QC Requirements: Duplicate, Blank, Spike, Spike Contro	PNL-ALO-128
Caustic Fusion - Na ₂ O ₂ (WPkg K28863) (QC Requirements - ICP : 1 Duplicate per batch, Blank, F Digestion Spike, LCS per prep)	PNL-ALO-114 Post
Caustic Fusion - KOH (WPkg K28863) (QC Requirements - Radchem: Duplicate, Blank) (QC Requirements: Duplicate, Blank, Post Digestion Spik LCS per prep)	
Water Leach (WPkg K28864) (QC Requirements - IC: Duplicate, Blank, Spike, Spike ( (QC Requirements - ICP: Duplicate, Blank)	PNL-ALO-103 Control)
Total CN Prep (WPkg K28868) (QC Requirements: Duplicate, Blank, Spike, Spike Contro	PNL-ALO-285

#### **REQUESTED ANALYSES:**

(

Requested Analysis	Procedure Number	<u>Task Leader</u>	WP#
ICP (Acid. Fusion. Water Leach)	PNL-ALO-211	Urie '	K28866
IC (Water Leach)	PNL-ALO-212	Urie	K28867
CN (Direct)	PNL-ALO-285	Urie	K28868
TOC by Hot Persulfate (Direct - solids)	PNL-ALO-381	Steele	K28869
TOC (Direct - liquids)	PNL-ALO-382	Urie	K28869
Total Alpha (Fusion, Acid)	PNL-ALO-421	Greenwood	K28870
AEA (Pu-239/240) (Fusion)	PNL-ALO-422/423	Greenwood	K28871

TI95-TWC-03 Rev 1 PAGE 3 OF 7

Requested Analysis	Procedure Number	<u>Task Leader</u>	WP#
GEA (Fusion, Acid)	PNL-ALO-450	Greenwood	K28872
Total Beta (Fusion, Acid)	PNL-ALO-430/431	Greenwood	K28873
Sr-90 (Fusion)	PNL-ALO-433/431	Greenwood	K28874
U-Laser (Fusion)	PNL-ALO-445	Greenwood	K28875

#### SAMPLE IDENTIFICATION SYSTEM FOR SEGMENT AND QUARTER-SEGMENTS:

The following sample identification system will be followed. All samples will be identified as 95-XXXXX-Y#, where 95-XXXXX is the ACL number. The "Y" letter will identify a Sample Preparation Method. The "#" identifies replicate analyses using the sample preparation method (i.e., duplicates, spikes, blanks, etc.). The Sample Preparation Methods codes are:

- A Acid Digestion
- C Water Leach
- D Direct
- G Cyanide Sample Prep
- H Caustic Fusion KOH
- J Carbon
- N Caustic Fusion Na₂O₂

#### The replicate analysis codes are:

- 1 Sample
- 2 Sample Duplicate
- 3 Methods Blank
- 4 Matrix Spike
- 5 LCS / Blank Spike
- 6 Post Digestion Spike

# Segment 1 Segment 1 Unhomogenized

**CORE 99 SEGMENT 1 ANALYSES** 

TGA	95-07931		Run in Duplicate
Waler Leach			Water Leach Sample (IC, ICP)
		95-07941-C2	Waler Leach Duplicate
		95-07941-C3	Methods Blank (one per batch)
•		95-07941-C4	Spike (IC Only) (one per batch)
		95-07941-C5	Blank Spike (IC Only) (one per batch)
Direct			DSC & Density Sample
		95-07941-D2	DSC & Density Duplicate
<u> </u>			Methods Blank (one per batch)
Total Cyanide			Total CN Sample
			Total CN Duplicale
	•		Methods Blank (one per batch)
1			Matrix Spike (one per batch)
			(Blank Spike (one per batch)
Homogenization Test			Homogenization Test Fusion Sample - Top *
Fusion Dissolution			Homogenization Test Fusion Duplicate - Top
кон			Homogenization Test Fusion Blank
			Homogenization Test Fusion Sample - Bottom
			Homogenization Test, Fusion Duplicate - Bottom
Fusion Dissolution			KOH Fusion Sample (ICP, Radchem**)
, KOH			KOH Fusion Duplicate
			Methods Blank (one per batch)
l			LCS (one per prep)
			Post Digestion Spike (ICP Only)
Carbon	•		Carbon Analysis Sample (TIC/TOC/TC)
			Carbon Analysis Duplicate
			Methods Blank (one per batch)
			Malrix Spike (one per batch)
Fusion Dissolution			Na2O2 Fusion Sample (ICP)
Να2Ο2			Na2O2 Fusion Duplicate (one per batch)
			Methods Blank (one per batch)
ì			LCS (one per prep)
		95-07941-No	Post Digestion Spike

Anatysis

^{*} Homogenization Test: ICP & GEA
** Fusion Radichem: Total Alpha, Total Beta, \$r-90, PU-239/240, GEA, U)

# **CORE 99 SEGMENT 2 ANALYSES**

	Run in Duplicate	Acid Digestion Sample (ICP, Radichem *)	Acid Digestion Duplicate	Methods Blank (one per batch)	Malrix Spike (one per batch)	Diank Spike (one per batch)	Water Leach Sample **	Worlen Leacth Duplicale	Methods Blank (one per botch)	Splike (IC Only) (one per batch)	(Nonk Spike (IC Only) (one per batch)	Direct Sample ***	Direct Duplicate	Methods Blank (one per batch)	Total CN Sample	Total CN Duplicate	Methods Blank (one per batch)	Maint Spike (one per batch)	Dlonk Spike (one per batch)	KOH Fusion Somple (ICP, Radchem****)	KOH Fusion Duplicate	Melhods (Bank (one per batch)	LCS (one per prep)	Post Digestion Spike (ICP Only)	Carbon Analysis Sample (TIC/TOC/TC)	Carbon Analysis Duplicate	Methods Blank (one per batch)	Matrix Spike (one per batch)	Na2O2 Fusion Sample (ICP)		Methods Blank (ane per batch)	LCS (one per prep)	Post Digestion Spike
Quarter Segment 2D							12-C76/0-56	95-07943-C2	95-07943-C3	95-07943-C4	95-07943-C5	95-07943-D1	95-07943-02	95-079A3-D3	19:07943-G1	95-07943-G2	95-07943-63	95-07943-G4	95-07943-G5	95-07943-H1	95-07943-H2	95-07943-H3	95-07943-H5	95-07943-H6	95-07943-33	95-07943-12	95-07943-13	95-07943-J4	1N-C7640-56	95-07943-N2	95-07943-N3	95-07943-N5	95-07943-N6
Quarter Segment 2A							95-07942-C1	95-07942-C2	95-07942-C3	95-07942-C4	95-07942-CS	95-07942-01	95-07942-02	95-07942-D3	95-07942-G1	95-07942-G2	95-07942-G3	95-07942-G4	95-07942-G5	95-07942-H1	95-07942-H2	95-07942-H3	95-07942-H5	95-07942-H6	95-07942-JI	95-07942-32	95-07942-33	95-07942-JA	95-07942-N1	95-07942-N2	95-07942-N3	95-07942-N5	9507942:N6
Cuarter Segment 2D Unhomogenized	95-07934							•								_																	
Cuarter Segment 2A Unhomogenized	95-07933																																
Segment 2 Drainable Hauld	95-07932	95-07932-A1	95-07932-A2	95-07932-A3	95-07932-A4	95-07932-A5	95-07932-C1	95-07932-C2	95-07932-C3	95-07932-C4	95-07932-C5	95-07932-D1	95-07932-02	95-07932-D3	95-07932-G1	95-07932-G2	95-07932-G3	95-07932-G4	95-07932-G5						95-07932-J1	95-07932-J2	95-07932-13	95-07932-34					
Ancitysis	1GA	· Acld Digestion		-			Water Leach					Direct			Tolal Cyanide					Fusion Dissolution	KOH	±			Carbon				Fusion Dissolution	Na2O2			

Acid Digestion Rodchem: Total Alpha, Total Belta, GEA
 Water Leacht: IC on Drahable Uquid, and Quarter Segments., ICP on Quarter Segments
 Direct Sample: DSC on Drahable Uquid, DSC and Density on Quarter Segments
 Pusson Radchem: Total Alpha, Total Belta, Sr-90, PU-239/240, GEA, U)

## **CORE 99 SEGMENT 3 ANALYSES**

Analysis	Segment 3 Drainable Liquid	Quarier Segment 3A Unhomogenized	Quarler Segment 3A	
TGA	95-07935	95-07936		Run in Duplicate
Acid Digestion	95-07935-A1			Acid Digestion Sample (ICP, Radchem *)
	95-07935-A2			Acid Digestion Duplicate
	95-07935-A3			Methods Blank (one per batch)
	95-07935-A4			Spike (one per batch)
	95-07935-A5			Blank Spike (one per batch)
Waler Leach	95-07935-C1			Water Leach Sample **
1	95-07935-C2			Water Leach Duplicate
<u> </u>	95-07935-C3			Methods Blank (one per batch)
	95-07935-C4			Spike (IC Only) (one per batch)
	95-07935-C5			Blank Spike (IC Only) (one per batch)
Direct	95-07935-D1		95-07944-D1	Direct Sample ***
	95-07935-D2			Direct Duplicate
l	95-07935-D3		95-07944- <u>D3</u>	Methods Blank (one per batch)
Total Cyanide	95-07935-G1			Total CN Sample
·	95-07935-G2			Total CN Duplicate
ļ	95-07935-G3			Methods Blank (one per batch)
!	95-07935-G4			Matrix Spike (one per batch)
	95-07935-G5			Blank Spike (one per batch)
Fusion Dissolution				KOH Fusion Sample (ICP, Radchem****)
кон				KOH Fusion Duplicate
				Methods Blank (one per batch)
1				LCS (one per prep)
				Post Digestion Spike (ICP Only)
Carbon	95-07935-J1			Carbon Analysis Sample (TIC/TOC/TC)
ŀ	95-07935-J2			Carbon Analysis Duplicate
i .	95-07935-J3			Methods Blank (one per batch)
	95-07935-J4			Matrix Spike (one per batch)
Fusion Dissolution	]	<b>[</b>		Na2O2 Fusion Sample (ICP)
Na2O2				Na2O2 Fusion Duplicate (one per batch)
				Methods Blank (one per batch)
1				LCS (one per prep)
Ī	<u> </u>	1	95-07944-No	Post Digestion Spike

* Acid Digestion Radchem: Total Alpha, Total Beta, GEA

** Water Leach: IC on Drainable Liquid and Quarter Segment, ICP on Quarter Segment

*** Direct Samples: DSC on Drainable Liquid, DSC and Density on Quarter Segment

**** Fusion Radchem: Total Alpha, Total Beta, Sr-90, PU-239/240, GEA, U)

WHC-SD-WM-DP- 145, REV.

195-TWC-03 Rev 1 PAGE 6 OF 7

# CORE 99 SEGMENT 4 ANALYSES

				_					
Analysis	Quarter Segment 4A Unhomogenised	Cuarter Segment 48 Unhomogenized	Segment 4C Unhomogenized	Segment 4D Unhomogenized	Oucrier Segment 4A	Quarter Segment 48	Guarier Segment 4C	Cuarter Segment 4D	
19A	95-07937	92-07-036	05-07930	05-07940				֓֟֟֟֟֟	A.n. h. Ouploole
Water Leach					95-07945-CI	95-07946-CI	95-07947-CI	9507946CI	Water Leach Sample (IC, ICP)
					95-07945-C2	95-07946-C2	95-07947-C2	95-079-65-C2	Water Leach Duploafe
					95-07945-C3	95-07946-C3	95-07947-C3	95.079.6C3	Methods Bork (one per botch)
					95-07945-C4	95-07946-C4	95-07947-C4	9507946-C4	Spike (IC Only) fone per boticity
					95-07945-C5	95-07946-C5	95-07947-C5	95-079-46-C5	Blonk Spike (IC Only) (one per bolich)
Direct					95-07945-D1	10-946/0-56	1G-276/0-56	95-07948-D1	DSC & Denethy Somple
				,	95-07945-D2	95-07946-D2	95-07947-D2	95-07946-02	DSC & Denethy Duplicate
					95-07945-D3	95-07946-03	95-07947-D3	95-07946-03	Methods Blank (one per bolch)
Total Cyanide					95-07945-G1	19-996/0-56	95-07947-GI	95-07946-GI	Fold CN Sompte
•					95-07945-G2	95-07946-G2	95-07947-G2	95-079-G2	Total CN Duplicate
					95-07945-G3	95-07946-G3	95-07947-G3	95-079-63	Methods Blank (one per botch)
			_		95-07945-G4	95-07946-G4	95-07947-G4	95-079-GA	Mathit Spiles (one per batch)
					05-07045-G5	95-07946-G5	95-07947-G5	95-07946-G5	Blank Spille (one per balch)
tomogenitorion Test		-				1111-99620-56			fornogeneoffon lest fusion Sample - Top *
Fusion Dissolution						95-07946-H2T			Homogenisation Test Fusion Duplicate - Top
Ş						95-07946-HCB			tomogenitation Test Fuston Blank
						95-07946-HIB		-	Homogenitoflon Test Fusion Sample - Bottom
						95-07946-H2B		-	Homogranization Test Fusion Ouplicate - Bothorn
Fusion Dissolution					95-07945-HB	111-946/0-56	1147640-29	1H996/056	KOH Fusion Somple (ICP, Rodchem**)
KOR				-	95-07945-112	95-07946-HZ	95-079-47-412		KOH Fusion Duplicate
					95-07945-H3	05-07946-HJ	05-07947-413		Methods Blank (one per botch)
				•	95-07945Ht5	95-07946-15	98-07947-HS	95-079-EE-ES	(CS (one per prep)
					95-07945-146	95-07946-H6	95-07947-46	95-079-8-16	95-07948-H6 Post Digastion Spike (ICP Only)
Carbon					95-07945-31	11-970/0-50	10-70-02-01	17996/056	Carbon Analysis Sample (RC/IOC/IC)
			•	•	95-07945-12	95-07946-12	95-07947-52		Carbon Analysis Duplicale
					95-07945-13	95-07946-13	95-07947-33	05-07948-U3	Methods Blank (one per ballat)
					05-079AS-JA	95-07946-JA	95-07947-JM	95-07946-14	Mothic Spiles (one per bolich)
Fusion Ofssohulton					95-07945-NI	IN-996/0-56	IN-196/0-56	14-94-0-56	No2CQ Fution Somple (ICP)
Ng202					95-07945-NZ	95-07946-NZ	95-07947-142		No2O2 Ruton Duplicate (one per botch)
					95-07945-ND	02-07946-NO	95-07947-N3		Methods Blank fone per bolich)
					95-07945-NS	95-079-6-NS	95-079-115	25-07-0-NS	(Cs (one per prep)
					05-07945-N6	95-07946-NB	95-07947-N6	95-079-0-NS	95-07948-N6 [Post Digestion Spike

Homogentation Test: ICP & GEA
 Color Production Tests Arbor 1942 Bads 9-00 B12702

## SUPERSEDED

CONTROLLED DOCUMENT

T195-TWC-03 PAGE 1 OF 7

TANK CHARACTERIZATION TEST INSTRUCTIONS FOR ANALYSES OF SST 241-BY-108, CORE 99 SEGMENTS 1-4

DATE PREPARED: September 6, 1995 PREPARED BY: KL Silvers

SAMPLE NUMBERS: 95-07931 -

CONTROLLING DOCUMENTS: Project No: 21372

WHC TCP: Tank 241-BY-108 Tank Characterization Plan (WHC-SD-WM-TP-275) Revision OE - ECN No: 6621348 (August, 1995) PNL QAP: MCS-033, Revision 2 (April, 1995)

Controlling Procedure: PNL-ALO-010

#### INTRODUCTION

This Test Instruction (TI) defines the scope of work to be completed on Single-Shell Tank (SST) 241-BY-108. Core 99 Segments 1, 2, 3 and 4. The samples from this tank will be analyzed according to TCP (WHC-SD-WM-TP-275 Rev. OE).

This TI contains instructions for the preparation and analyses by the ACL of all segments, quarter-segments, and drainable liquids from Core 99.

All activities identified in this Test Instruction shall be charged against Project 21372. All analyses are to be completed at Impact Level 2. All analyses are to be completed following the identified procedures. Any deviations to the procedures must be documented and this documentation must accompany the analytical data. All analytical data are returned to the Laboratory Support Office.

#### SAL SAMPLE PREPARATION INSTRUCTIONS FOR SEGMENTS AND QUARTER-SEGMENTS:

The following tank material samples were transferred from the HLRF:

CORE IDENTIFICATION	ACL NUMBER
Core 99 - Segment 1 (homogenized, mechanical)	95-07941
Core 99 - Segment 2 (drainable liquid)	95-07932
Core 99 - Quarter-Segment 2A (homogenized, manual)	95-07942
Core 99 - Quarter-Segment 2D (homogenized, manual)	95-07943
Core 99 - Segment 3 (drainable liquid)	95-07935
Core 99 - Quarter-Segment 3A (homogenized, manual)	95-07944

WHC-SD-WM-DP-145, REV. 1	T195-TWC-03 PAGE 2 OF 7
CORE IDENTIFICATION	ACL NUMBER
Core 99 - Quarter-Segment 4A (homogenized, mechanical) Core 99 - Quarter-Segment 4B (homogenized, mechanical) Core 99 - Quarter-Segment 4C (homogenized, mechanical) Core 99 - Quarter-Segment 4D (homogenized, mechanical)	95-07945 95-07946 95-07947 95-07948
The following sample preparation steps are required:	
Method	<u>Procedure</u>
Acid Digestion for ICP - liquid (WPkg K28862) (QC Requirements: Duplicate, Blank, Spike, Spike Control)	PNL-ALO-128
Caustic Fusion - NaOH (WPkg K28863) (QC Requirements - Radchem: Duplicate, Blank)	PNL-ALO-114
(QC Requirements - ICP : 1 Duplicate per batch, Blank, Post Spike)	Digestion
Caustic Fusion - KOH (WPkg K28863) (QC Requirements: Duplicate, Blank, Post Digestion Spike)	PNL-ALO-115
Water Leach (WPkg K28864) (QC Requirements - IC: Duplicate, Blank, Spike, Spike Cont (QC Requirements - ICP: Duplicate, Blank)	PNL-ALO-103 rol)
Total CN Prep (WPkg K28868) (QC Requirements: Duplicate, Blank, Spike, Spike Control)	PNL-ALO-285

#### REQUESTED ANALYSES FOR SEGMENTS & QUARTER-SEGMENTS:

Requested Analysis	Procedure Number	<u>Task Leader</u>	<u>wP#</u>
ICP (Acid, Fusion, Water Leach)	PNL-ALO-211	Urie	K28866
IC (Water Leach)	PNL-ALO-212	Urie	K28867
CN (Direct)	PNL-ALO-285	Urie	K28868
TOC by Hot Persulfate (Direct)	PNL-ALO-381	Steele	K28869
Total Alpha (Fusion)	PNL-ALO-421	Greenwood	K28870
AEA (Pu-239/240) (Fusion)	PNL-ALO-422/423	Greenwood	K28871
GEA (Fusion)	PNL-ALO-450	Greenwood	K28872

WHC-SD-W	M-UP-145, 1121		TI95-TWC-03 PAGE 3 OF 7
Requested Analysis	Procedure Number	Task Leader	WP#
Total Beta (Fusion)	PNL-ALO-430/431	Greenwood	K28873
Sr-90 (Fusion)	PNL-ALO-433/431	Greenwood	K28874
U-Laser (Fusion)	PNL-ALO-445	Greenwood	K28875

#### SAMPLE IDENTIFICATION SYSTEM FOR SEGMENT AND QUARTER-SEGMENTS:

The following sample identification system will be followed. All samples will be identified as 95-XXXXX-Y#, where 95-XXXXX is the ACL number. The "Y" letter will identify a Sample Preparation Method. The "#" identifies replicate analyses using the sample preparation method (i.e., duplicates, spikes, blanks, etc.). The Sample Preparation Methods codes are:

- Acid Digestion for ICP
- A C Water Leach
- Ď Direct
- Ğ Cyanide Sample Prep Caustic Fusion - KOH
- H
- J Carbon
- Caustic Fusion NaOH

### CORE 99 SEGMENT 1 ANALYSES

Analysis	Segment I Unhomogenized	Segment 1	
TGA	95-07931		Run in Duplicate
Waler Leach		95-07941-C1	Water Leach Sample (IC, ICP)
		95-07941-C2	Water Leach Duplicate
		95-07941-C3	Methods Blank
		95-07941-C4	Spike (IC Only)
		95-07941-C5	Spike Control (IC Only)
Direct		95-07941-D1	DSC & Density Sample
		95-07941-D2	DSC & Density Duplicate
		95-07941-03	Methods Blank
Total Cyanide		95-07941-G1	Total CN Sample
		95-07941-G2	Total CN Duplicate
		95-07941-G3	Melhods Blank (min 1 per batch)
•		95-07941-G4	Matrix Spike
		95-07941-G5	Spike Control
Homogenization Test		95-07941-H11	Homogenization Test Fusion Sample - Top *
Fusion Dissolution		95-07941-H2T	Homogenization Test Fusion Duplicate - Top
кон		95-07941-HC8	Homogenization Test Fusion Blank
1		95-07941-H1B	Homogenization Test Fusion Sample - Bottom
	,		Homogenization Test Fusion Duplicate - Bottom
Fusion Dissolution	,		KOH Fusion Sample (ICP, Radichem**)
KOH		95-07941-H2	KOH Fusion Duplicate
		95-07941-H3	Methods Blank
		95-07941-H6	Post Digestion Spike (ICP Only)
Carbon		95-07941-J1	Carbon Analysis Sample (TIC/TOC/TC)
		95-07941-J2	Carbon Analysis Duplicale
		95-07941-J3	Methods Blank
			Malrix Spike
Fusion Dissolution	•		NaOH Fusion Sample (ICP)
NaOH			NaOH Fusion Duplicate (one per batch)
		95-07941-N3	Methods Blank
		95-07941-N6	Post Digestion Spike

^{*} Homogenization Test: ICP & GEA
** Fusion Radchem: Total Alpha, Total Beta, Sr-90, PU-239/240, GEA, U)

# CORE 99 SEGMENT 2 ANALYSES

(

	Run in Duplicate	Acid Digestion Sample (ICP)	Acid Digestion Duplicate	Methods Blank (min 1 per batch)	Mointr Spilke	Spike Control	Water Leach Sample	95-07943-C2 Water Leach Duplicate	Methods Blank	ke (IC Only)	95-07943-C5 Spike Control (IC Onty)	Orec! Sample **	Direct Duplicate	Methods Blank	Total CN Sample	Total CN Duplicate	Methods Blank (min 1 per batch)	Motifix Spilke	Spike Control	KOH Fusion Sample (ICP, Radichem***)	KOH Fusion Duplicate	Methods (Nank	Post Dinestion Splite (ICP Only)	Carbon Analysis Sample (RC/TOC/TC)	Carbon Analysis Duplicate	Methods Biank	Matrix Spike	95-07943-N NoOH Fusion Somple (ICP)	NoOH Fusion Duplicate (one per botch)	Methods Blank	95-07943-N6 Post Digestion Spike
Quarter Segment 2D	Rur	Aci	¥	<u>¥</u>	<u>×</u>	_	95-07943-C1 Wo	95-07943-C2 Wo	95-07943-C3 Me	95-07943-C4 Spike (IC Only)	95-07943-C5 Spl	35-07943-D1 D#	95-07943-D2 Dire		95-07943-G1 Tot	95-07943-G2 Tot	_	95-07943-G4 MG	95-07943-G5 Spl	-		95-07943-H3 Me	95-07943-H6 Po	95-07943-J1 Ca	95-07943-J2 Ca	95-07943-J3 Me	95-07943-JA MG	95-07943-N1 No	95-07943-N2 No	95-07943-N3 Me	95-07943-N6 Po.
Quarter Segment 2A							95-07942-C1	95-07942-C2	95-07942-C3	95-07942-C4	95-07942-C5	95-07942-D1	95-07942-D2	95.07942.03	95-07942-G1	95-07942-G2	95-07942-G3	95-07942-G4	95-07942-G5	95-07942-H1	95-07942-H2	95-07942-H3	95-07942-H6	95-07942-31	95-07942-J2	95-07942-13	95-07942-JA	95-07942-N1	95-07942-N2	95-07942-N3	95-07942-N6
Quarter Segment 2D Unhomogenized	95-07934																														
Quarier Segment 2A Unhomogenized	95-07933																											·			
Segment 2 Drainable Uquid	95-07932	95-07932-A1	95-07932-A2	95-07932-A3	95-07932-A4	95-07932-A5	95-07932-C1	95-07932-C2	95-07932-C3	95-07932-CA	95-07932-C5	95-07932-D1	95 07932-D2	95-07932-D3	95-07932-G1	95-07932-G2	95-07932-G3	95-07932-G4	95-07932-G5					05-07932-11	95-07932-12	95-07932-13	95-07932-14				
Anciysis	1GA	Acid Digestion					Water Leach					Direct	i		Total Cranide					Fusion Dissolution	KOM			Corbon				Fusion Dissolution	¥00K		

Water Leach: IC on Drahable Liquid and Quarter Segments, ICP on Quarter Segments
 Direct Sample: DSC on Drahable Liquid, DSC and Density on Quarter Segments
 Fusion Radchem: Total Alpha, Total Beta, Sr-90, PU-239/240, GEA, U)

Analysis	Segment 3 Drainable Uquid	Quarter Segment 3A Unhomogenized	Quarter Segment 3A	
TGA	95-07935	95-07936		Run in Duplicate
Acid Digestion	95-07935-A1			Acid Digestion Sample (ICP)
	95-07935-A2			Acid Digestion Duplicate
	95-07935-A3		•	Methods Blank
•	95-07935-A4			Spike
	95-07935-A5			Spike Control
Waler Leach	95-07935-C1		95-07944-C1	Water Leach Sample *
	95-07935-C2		95-07944-C2	Water Leach Duplicate
	95-07935-C3		95-07944-C3	Methods Blank
	95-07935-C4		95-07944-C4	Splike (IC Only)
	95-07935-C5		95-07944-C5	Spike Control (IC Only)
Direct	95-07935-D1		95-07944-D1	Direct Sample **
	95-07935-D2		95-07944-D2	Direct Duplicate
	95-07935-D3		95-07944-D3	Methods Blank
Total Cyanide	95-07935-G1		95-07944-G1	Total CN Sample
	95-07935-G2		95-07944-G2	Total CN Duplicate
	95-07935-G3		95-07944-G3	Methods Blank (min 1 per batch)
	95-07935-G4		95-07944-G4	Matrix Spike
	95-07935-G5		95-07944-G5	Spike Control
Fusion Dissolution			95-07944-111	KOH Fusion Sample (ICP, Radchem***)
КОН	1 :		95-07944-H2	KOH Fusion Duplicate
•	1 1		95-07944-H3	Methods Blank
	1		95-07944-H6	Post Digestion Spike (ICP Only)
Carbon	95-07935-J1		95-07944-J1	Carbon Analysis Sample (TIC/TOC/TC)
	95-07935-J2		95-07944-J2	Carbon Analysis Duplicate
	95-07935-J3		95-07944-J3	Methods Blank
	95-07935-J4		95-07944-J4	Matrix Spike
Fusion Dissolution			95-07944-N1	NaOH Fusion Sample (ICP)
NaOH	1 1		95-07944-N2	NaOH Fusion Duplicate (one per batch)
			95-07944-N3	Melhods Blank
	! [		OS.O7OAA.NA	Post Digestion Spike

**CORE 99 SEGMENT 3 ANALYSES** 

^{*} Water Leach: IC on Drainable Liquid and Quarter Segment, ICP on Quarter Segment ** Direct Samples: DSC on Drainable Liquid, DSC and Density on Quarter Segment *** Fusion Radichem: Total Alpha, Total Beta, Sr-90, PU-239/240, GEA, U)

# **CORE 99 SEGMENT 4 ANALYSES**

Andysis Segment 4A			Description				-		
Desire Company	S de la	Segment 48 Unhomogenized	Segment 4C Unhomogenized	Segment 4D Unhomogenized	Cucrier Segment 4A	Segment 48	Segment 4C	Segment 4D	
1CA 95.07937	23	95-07938	95-07939	95-07940					Run in Ouploote
458					95-07945-CI	95-07946-CI	95-07947-C1	12-89-07-0-50	95-07948-C1 Water Leadh Sample (IC, ICP)
					95-07945-C2	95-07946-C2	95-07947-C2	95-0794B-C2	Worler Leacth Duplicate
					95-07945-C3	95-07946-C3	9507947.C3	95-079-66-C3	Methods Blank
-					95-07945-C4	95-07946-C4	95-07947-C4	95.0794B.C4	95-079-46-CA Splite (IC Only)
					95-07945-CS	95-07946-CS	95-07947-C5	95-07948-CS	95-07948-CS Japha Control (IC Onty)
Dieci					95-07945-DI	10-996/0-56	10-19610-56	95-07948-D1	95-07948-D1 DSC & Dentify Sompte
		•			95-07945-02	95-07946-D2	95-07947-D2	95-07948-D2	DSC & Denethy Duplicate
					95-07945-03	95-07946-03		95-07948-03	Methods Blonk
Total Cyanide					95-07945-G1	15-996/0-56	15-276/0-56	95-07948-GI	Tolici CN Scriptie
				•	95-07945-G2	95-07946-G2	95-07947-62	95-07946-G2	Folid CN Duplicate
					95-07945-63	95-079-65-G3	95-07947-63	95-079-653	Methods Blank (min 1 per botch)
					95-07945-G4	95-07946-G4	95-07947-G4	95-079-64	_
					95-07945-G5	95-07946-GS	95-07947-65	95-0794B-G5	Splite Control
Homogenholton Test						95-07946-H11			Homogenisotion lesi Fusion Somple - top *
Fusion Discolution						95-07946-H2T		•	Homogenitation Test Puston Duplicate - Top
Č						95-07946-HCB			Homogenitofion Test Fusion Blonk
						95-07946-H1B			Homogenischen Test Fuston Sorrpte - Bottom
						95-07946-H20			Homogenisotion Yest Ruston Dupitcote - Bothom
Fuelon Dissolution					95-07945-H1	111-9%/0-56	11+27620-56	11484670-56	95-07948-H1 KOH Kulton Somple (ICP, Rodchem**)
TO HOLD					95-07945-112	95-07946-HZ	95-07947-H2	95-07946-HZ	95-079464/2 KOH Fulton Duplicate
•					95-07945-113	95-07946-HD	95-07947-413	95-07948-HD	95-079-48-HD Methods Blonk
					95-07945-116	95-07946-145	95-07947-116	95-07948-146	95-07946-H6 Post Digestion Spiles (ICP Only)
Carbon					95-07945-31	11-940/0-56	17-2M520-56	95-079-88-31	95-07946-J1 Carbon Analysis Sample (TIC/TOC/TC)
					95-07945-12	95-07946-12	95-07947-12	95-07948-12	Corbon Analysis Duploode
					95-07945-13	95-07946-13	95-07947-13	95-079-48-13	Methods Blank
	_	***			05-07945-JA	95-07946-14	95-07947-JA	95-07948-34	Monte Spile
Fusion Dissolution					95-07945-NI	95-07946-N1	IN-196/0-56	S-07946-NI	NoOH Fution Sorrade (ICP, Rodohem*?)
Nook			•		95-07945-N2	95-07946-N2	95-07947-N2	95-07948-NZ	NoOH Futon Duplicate (one per batch)
					95-07945-N3	95-07946-N3	95-07947-113	95-07946-N3	Methods Blank
					95-07945-N6	95-07946-N6	95-07947-N6	95-07948-N6	Post Digestion Spike

Homogenbollon Test: KCP & GEA
 Evelon Brodstam: Total Abrita Total Beta 3-90, PU-239/240, GEA

#### **A5 - SAMPLE PREP DATA SHEETS**

DON'T SAY IT -- Write It!

Date: September 20, 1995

To: Memo To File/BY108 PM/QAQC Mgr

From: Rick Steele Lide

Subject: Tank BY-108 Sample Prep Documentational Error

The "Controlling Procedure" block on many Sample Prep Sheets supporting BY-108 characterization incorrectly listed "PNL-ALO-110". The correct procedural citation should have been "PNL-ALO-010" in all cases. The major effect of PNL-ALO-010 is that it invokes internal Chain of Custody. This was accomplished real time as samples traversed through the laboratory.

Please address any questions or concerns related to this error directly to me.



Project Number 21372

Internal Distribution

JM Latkovich KL Silvers OP Bredt KJ Smith File/LB

Date September 19, 1995

To TWRS Support Project File

From KJ Kuhl-Klinger

Subject Observations Performed on BY108

This memorandum serves as confirmation that all sample preparation activities (i.e., Water Leach, Acid Extraction and Fusion) used to process BY108 samples for analyses were subject to continual observation. The observations were conducted between 9/6/95 and 9/11/95. Observations were not conducted during homogeneity testing nor were they conducted on subsequent analyses such as TOC, CN and Hg.

The observations were conducted as assistance to the SAL but were also conducted to gain better understanding of the complexities associated with this scope of work.

Observations were conducted by one or more of the following personnel:

Kristine Kuhl-Kringer, Quality Operations

<u>9//9/93</u> Date

Stella Bredt, Quality Operations

9/20/95 Bate

Karla Smith, SAK Operations

E54-1900-001 (10/89)

# KOH FUSION AND SOLUBILITY TEST FOR HOMOGENIZATION CHECK

THIS PAGE INTENTIONALLY
LEFT BLANK.

DATE TO QC: 09/19/95

#### DATA QUALITY REVIEW

I have reviewed the following data for completeness and for compliance with project requirements.

Analyte - Fusion and Solubility Test for Homogenization Checks

Data Package/Report - BY-108 Core 99

Project No. - 21372

ACL Numbers - 95

95-07941-H1T 95-07941-H2T 95-07941-HCB 95-07941-H1B

95-07941-H2B

95-07946-H1T 95-07946-H2T 95-07946-HCB 95-07946-H1B

95-07946-H2B

PN ACL Quality Representative

0/73

Date

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory Shielded Analytical Laboratory

Page 1 of 1

#### Shielded Analytical Laboratory FUSIONS

P	roject Id: <u>TWC</u>	:/21372	•		WP N	umber: <u>K28</u>	863
T	est Instructio	on: <u>T195-TW</u>	<u>:-02</u>		Pro	cedure: PN	L-ALO-115
	Sample Ident.	Wet Sample Gross Wt (g)	Wet Sample Tare Wt (g)	Wet Sample Net Wt (g)	Dry Sample Gross Wt (g)	Dry Sample Tare Wt (g)	Dry Sample Net Wt (g)
, [	95-07946-H1T 95-07946-H2T	1					
3	95-07946-HCB	44.64	45,6777				
	95-07946-H1B 95-07946-H2B						
_	All SAM.	00 X	4.94	93	total Se	Volum-	e,
_	4.954	34 RS	1) 129	<i>7.</i>			
 M	4,948 4,960 NATE:	3 Pel	i life.	9653 n	<u>al</u>		
_	✓ Mettler AE	160 (360-06	-01-016)		_ Mettler	AE200 (36	2-06-01-03
-	Sartorius	R200D (360-	06-01-024)				
	Analyst:		ate:	Davis	iewer:		Date:

3-174

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory Shielded Analytical Laboratory

Page _1 of _1_

### Shielded Analytical Laboratory FUSIONS

roject Id: <u>TW</u> est Instructi		<u>5-02</u>			umber: <u>K28</u> cedure: PN	
Sample Ident.	Wet Sample Gross Wt (g)	Wet Sample Tare Wt (g)	Wet Sample Net Wt (g)	Dry Sample Gross Wt (g)	Dry Sample Tare Wt (g)	Dry Sample Net Wt (g)
95-07941-H1T	46.4294	46.3289	0,1005			
95-07941-H2T	44.8966	44.7940	0.1026			
95-07941-HCB	****	45.8179	D-1028	८७ सम्बद		
95-07941-H1B	52.8967	52.7939	0.1078			
95-07941-H2B	44,5022	44.4021	0.1289			
Info.	<del>,</del>					
NATE:						·

3-175

			(325 5	SA <b>M</b> SHIELDED	IPLE PREF ANALYTI		ORATO	RY)				
TI NO.: _T	<u>195-TWC-02</u> PR	OJECT NO.:2137	2 W	'BS NO.: <u>020</u>	0501			SAMF	PLE TYPE: _	SLUDGE		
	Y: Rick T. S	1/ // //	DATE:					PREP	TYPE: <u>N</u>	I/KOH FUSI	ON	
	(My)	handeale.	DATE:	<u> 4-1-</u>	<u>7</u>			ROLLING PF			·	
REVIEW:	——————————————————————————————————————	de S. Stule		•				PLAN: MC	S-033	IMPAC	T LEVEL: _	
	· · · · · · · · · · · · · · · · · · ·		CORE II	D: <u>99</u>	TAN	⟨ ID: <u>B</u>	Y-108					
WORK PACKAGE NUMBER	ALO NUMBER	ANALYTICAL PROCEDURE	ANALYTE OR ANALYSIS	SAMPLE WT	WATER WT (g)	TOTAL VOL (mL)	SPIKE ID	SPIKE VOL (mL)	DILUTION FACTOR	DILUTION MATRIX	PIPET CALIB (mL)	MISC
K28872	95-07941-H1T	PNL-ALO-450	GEA	0.1005		(00					4.9653	SAMP
	95-07941-H2T			0.1026								SAMP DUP
	95-07941-HCB											BLANK
	95-07941-H1B			0.1028	<u> </u>	<u> </u>	<b></b>			<u> </u>		SAMP
	95-07941-H28			0.1289		<b>1</b>						SAMP DUP
		Delivered	9.93	05ml	uf en	chs	unge	++	re la	اب		
	-				V							
						<u> </u>					ļ	
												~~-

PAGE __1_ OF __1

WHC-SD-WM-DP-145, REV. 1

			(325 S	SAM HIELDED /	PLE PREP ANALYTI(		ORATOR	RY)				
TI NO.: <u>T</u> I	195-TWC-02_ PR	OJECT NO.: <u>21372</u>	<u>2</u> W	BS NO.: <u>020</u>	501			SAMP	LE TYPE: _	SLUDGE		
ISSUED BY	Y:Blck T_S	leele /	DATE:	8/28/95				PREP	TYPE: N	KOH FUSI	ON	<del></del>
ANALYST:	Chilet	handali.	DATE:	9-1-	95		CONTR	ROLLING PR	OCEDURE:	PNL-ALC	<u>)-010</u>	
REVIEW:	Flow ,	Still	D TE:	9/1/9	5		QA P	LAN: <u>MCS</u>	5-033	IMPACT	r Level: _	
			CORE II	D: <u>99</u>	TAN	( ID:B	Y-108	_				
WORK PACKAGE NUMBER	ALO NUMBER	ANALYTICAL PROCEDURE	ANALYTE OR ANALYSIS	SAMPLE WT	WATER WT (g)	TOTAL VOL (mL)	SPIKE	SPIKE VOL. (mL)	DILUTION FACTOR	DILUTION MATRIX	PIPET CALIB (mL)	MISC
K28872	95-07946-H1T	PNL-ALO-450	GEA	5001.0		100					4.9653	SAMP
	95-07946-H2T			0.0992								SAMP DUP
	95-07946-HCB	<b></b>		0.0710								BLANK
	95-07946-H1B			0.116		<u> </u>						SAMP
	95-07946-H2B			0.0957		<b> </b>				<u> </u>		SAMP DUP
							1		·	ļ		
							ļ			1		
		Delivere	9.9	305ml	uf e	ch	Jamp	le to	the	lab		
				ļ	<u> </u>	<b> </b>	O			-	<b> </b>	<u> </u>
					<b> </b>	<u> </u>	1		<del>                                      </del>			ļ
			1									

PAGE __1_ OF _1_

Battelle Pacific Northwest Laboratorie	S
Analytical Chemistry Laboratory	
325 Shielded Analytical Laboratory	

			(325 \$	SAM SHIELDED	IPLE PREI ANALYTI			RY)	•			······································
TI NO.:	<u>195-TWC-02</u> PR	OJECT NO.: <u>2137</u>	<u>2</u> W	/BS NO.: <u>020</u>	0501			SAMF	PLE TYPE: _	SLUDGE		
ISSUED B	Y: Rick T. S	teele	DATE:	8/28/95				PREP	TYPE: <u>N</u>	I/KOH FUSI	ON	
ANALYST:	And Cl	ragher _	DATE:	9-1-9	75		CONT	ROLLING PF	ROCEDURE	PNL-AL	O <u>-010</u>	
REVIEW:	Put J.	Stule	D TE:	9/1/93			QA F	PLAN: MC	S-033	IMPAC	r Level.: _	
	7			D: <u>99</u>		K ID:	BY-108	<del></del>				
WORK PACKAGE NUMBER	ALO NUMBER	ANALYTICAL PROCEDURE	ANALYTE OR ANALYSIS	SAMPLE WT	WATER WT (g)	TOTAL VOL (mL)	SPIKE ID	SPIKE VOL (mL)	DILUTION FACTOR	DILUTION MATRIX	PIPET CALIB (mL)	MISC
K28866	95-07941-H1T	PNL-ALO-211	ICP	0.1005		100						SAMP
	95-07941-H2T			0,1026								SAMP DUP
	95-07941-HCB			O TO LO								BLANK
	95-07941-H1B			0.1028								SAMP
_	95-07941-H2B	 	<b> </b>	0. /289			<u> </u>	<b></b> -		ļ		SAMP DUP
			<b> </b>			<del> </del>	<b></b>			<del> </del>		
			ļ ———	<del></del>	ļ	<b> </b> -	1			<del> </del>		
						<b> </b>	<b> </b>				<u> </u>	
						-	<u> </u>					
		·	<b></b>			-	<del>                                     </del>		<b></b>			

PAGE _1 OF _1

			(325 S	SAM HIELDED		P SHEET ICAL LAE	BORATO	RY)				
TI NO.: _1	195-TWC-02 PI	ROJECT NO.: 21	1 <u>372</u> W	BS NO.: <u>020</u>	501			SAMP	LE TYPE: _	SLUDGE		
ISSUED B	Y:	Steele	DATE:	8/28/95	·			PREP	TYPE: N	I/KOH FUSI	ON	
ANALYST:	y John Y	Chanleal	DATE:	9-1-5	25		CONT	ROLLING PF	OCEDURE	PNL-ALC	D-010	
REVIEW:		1 Stell	D TE:	9/1/9	<u> </u>		QAI	PLAN: <u>MC</u>	S-033	IMPAC	r Level: _	
		<del></del>		D: <u>99</u>		IK 1D:I	BY-108	<del></del>				
WORK PACKAGE NUMBER	ALO NUMBER	ANALYTICAL PROCEDURE	ANALYTE OR ANALYSIS	SAMPLE WT	WATER WT (g)	TOTAL VOL (mL)	SPIKE 10	SPIKE VOL (mL)	DILUTION FACTOR	DILUTION MATRIX	PIPET CALIB (mL)	MISC
K28866	95-07946-H1T	PNL-ALO-211	ICP	0,1002		100						SAMP
-	95-07946-H2T			5,0992								SAMP DUP
	95-07946-HCB			0.0116								BLANK
	95-07946-H1B			0.1116			<b></b>		<u> </u>	<b></b>		SAMP
	95-07946-H2B		_	0.0957		<u> </u>						SAMP DUP
						<del> </del>	-	<u> </u>				1
				<u> </u>	ļ	<b>_</b>	<b></b>		ļ	<b> </b>	ļ	-
	<u> </u>			<b> </b>		<u> </u>		<u> </u>		ļ		- <b> </b>
_ <del></del>			_	<b></b>		<b>-</b>	╣	<del>                                     </del>	ļ	<b> </b>	<b> </b>	1
	1	_		<b> </b>	<del> </del>		-	<del>                                     </del>	1			<del> </del>

PAGE __1_ OF _1_

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory Shielded Analytical Laboratory/Sample Receiving Laboratory

EXHIBIT I
PAGE 1 of 1

Cilent name:	Kurt Silvers			·	<u> </u>		Work pa	kage number	K28868
k Auth. Doc (WAD):	Ti95-TWC-02 / ASR 2388		· · · · · · · · · · · · · · · · · · ·			19,30,100,40	P	roject number:	21372
A 1984 To 1984		nt 1 and	Qtr Segment 4	B / Tank Waste Cl	haracterization		•	PNL QA plan	MCS-033
Special instructions	Andrews		·	<del> </del>	10		PN	L impact level:	II
papin kinasaiti								Carolina de Caroli	
		9				V 19,419	Preparation	batch number	N/A
ACL Sample ID	ACL order number or Client sample ID	Vial Identifier	Vial weight (g)	Vial & sample weight (g)	Sample weight (g)	Spike Vol. (ml)	e added Weight. (g)	Final solution Volume (mf)	Process Factor (1)
95-07941-H1T	Segment 1 Top		21.5632	22.0188	0.4556	Ï		25-	
95-07941-H2T	Segment 1 Top-Dup		21.6672	22,/335	0.4663		i	1	
95-07941-HCB	Methods Blank			<u> </u>			ï		
95-07946-H1T	Qtr Segment 4B Top		21.5403	22.0056	0.4653				
95-07946-H2T	Qtr Segment 4B Top-Dup		21.4616	22.0534	0.5920			<b>*</b>	
,									
							1		
					ļ				
		<b> </b>	<u></u>						
			ļ		ļ				
							<u> </u>		
							<u> </u>		
		ļ					<u> </u>		
		<u> </u>	<u> </u>		<u> </u>		!		
			107001 4	900 9	9907 [1]	0/4	PNL spi	Spike source: ke ID number:	
N stem evad	4D~ frorto		2-101	.9980					
415+110101101		-					Sample fil	tered (yes/no):	
Process factor	= Final volume (ml) / [ Vial & sa						•		
	ACL Sample ID 95-07941-H1T 95-07941-HCB 95-07946-H1T 95-07946-H2T Analyst's sam	ACL order number or ACL sample ID  95-07941-H1T  95-07941-H2T  95-07941-HCB  95-07946-H1T  95-07946-H2T  Qtr Segment 4B Top  95-07946-H2T  Qtr Segment 4B Top-Dup  Analyst's sample preparation comments:  01 X dilutious of All sample  Listalians	ACL order number or Vial Report of Client sample ID Client sample ID Client sample ID Segment 1 Top 95-07941-H2T Segment 1 Top 95-07941-HCB Methods Blank 95-07946-H1T Qtr Segment 4B Top 95-07946-H2T Qtr Segment 4B Top Qtr Segment 4B Top Oth Segment 4B Top 95-07946-H2T Qtr Segment 4B Top 95-07946-H2T Qtr Segment 4B Top Oth Segment 4B T	ACL order number or Vial Vial ACL sample ID Client sample ID Client sample ID Segment 1 Top 2/.5632 95-07941-H1T Segment 1 Top 2/.5632 95-07941-H2T Segment 1 Top-Dup 2/.6673 95-07941-HCB Methods Blank 95-07946-H1T Qtr Segment 4B Top-Dup 2/.5403 95-07946-H2T Qtr Segment 4B Top-Dup 2/.4616  Analyst's sample preparation comments:  Of X dilutions of All samples Dil. Factor: Segment 10 Analyst's sample preparation comments:	ACL Sample ID  ACL Sample ID  ACL Sample ID  Client sample ID  Segment 1 Top  95-07941-H1T  Segment 1 Top-Dup  95-07941-HCB  Methods Blank  95-07946-H1T  Qtr Segment 4B Top-Dup  95-07946-H2T  Qtr Segment 4B Top-Dup  95-07946-H2T  Qtr Segment 4B Top-Dup  95-07946-H2T  Qtr Segment 4B Top-Dup  27.5403  22.0534  Analyst's sample preparation comments:  O[X duthous of All Ample)  D:// Factor: 1930	RAUth. Doc (WAD): Ti95-TWC-02 / ASR 2388  Tank/Core/Project: Tank BY-108, Core 99, Segment 1 and Qtr Segment 4B / Tank Waste Characterization Special Instructions  ACL sample ID ACL order number or Vial Vial Vial Sample weight (g) Weight (g) Weight (g) Segment 1 Top A/.5632 A2.0/88 0.4556  95-07941-H1T Segment 1 Top A/.5632 A2.0/88 0.4556  95-07941-HCB Methods Blank 95-07946-H1T Qtr Segment 4B Top A/.5403 A2.0056 0.4653  95-07946-H2T Qtr Segment 4B Top-Dup A/.5403 A2.0056 0.4653  95-07946-H2T Qtr Segment 4B Top-Dup A/.6466 A2.0536 0.5920  Analyst's sample preparation comments:  OIX dilutions of All Samples Dil. Factor: 1980	RAUTH. Doc (WAD): Ti95-TWC-02 / ASR 2388  Tank/Core/Project: Tank BY-108, Core 99, Segment 1 and Qtr Segment 4B / Tank Waste Characterization special instructions  ACL order number or Vial Vial Vial Sample Sample Splks ACL Sample ID Client sample ID Identifier Weight (g) Weight (g) Weight (g) Vol. (mf) 95-07941-H1T Segment 1 Top 2/.5632 2/3.0/88 0.4556 95-07941-H2T Segment 1 Top-Dup 2/.6673 2/3.0/88 0.4556 95-07941-HCB Methods Blank 95-07946-H1T Qtr Segment 4B Top 2/.5403 22.0056 0.4653 95-07946-H2T Qtr Segment 4B Top-Dup 3/.46/6 22.0536 0.59.20  Analyst's sample preparation comments:  OIX dilutious of All sample) Dil. Factor: 1980	R Auth. Doc (WAD): Ti95-TWC-02 / ASR 2388 Tank/Core/Project: Tank BY-108, Core 99, Segment 1 and Qtr Segment 4B / Tank Waste Characterization  PN  Prep. lab (SA  ACL sample ID  ACL sample ID  Client sample ID  Client sample ID  Client sample ID  ACL Sample ID  ACL Sample ID  ACL Sample ID  ACL Sample ID  Client sample ID  ACL Sample III  ACL Sample II	RAUTH. Doc (WAD): T195-TWC-02 / ASR 2388  Tank/Core/Project: Tank BY-108, Core 99, Segment 1 and Qtr Segment 4B / Tank Waste Characterization  PNL Impact levels  Prep. Iab (SAL/SRP/Lother)  Preparation batch number  ACL order number or Client sample ID Vial Vial & sample weight (g) Vial & sample weight (g) Vol. (m) Volume (m) Volume (m) 95-07941-H1T Segment 1 Top Dup 2/.5/32 2/.7335 0.4663  95-07941-HCB Methods Blank 95-07945-HT Qtr Segment 4B Top 2/.5/03 2/.5/03 2/.056 0.4653  95-07946-H2T Qtr Segment 4B Top 2/.5/03 2/.5/03 2/.056 0.4653  Analyst's sample preparation comments:  OIX chustors of All Sample Oct. Factor: 1930

Reviewer/Date:

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory Shielded Analytical Laboratory Page 1 of 1

#### Shielded Analytical Laboratory Bench Sheet

Client: _	Kurt Silver	<u>s</u>	WP Number: _	K28863	
TI#/ARF:	T195-TWC-02 /	ASR 2388	Procedure: _	PNL-ALO-129	
	95-07941 Segmer	ot 1 95-07946 Q SAMPLE IDE	TR_Segment 4B NTIFICATION	Soluability	Test
95- 7	94/_/+2	clean,	but ha	l suhi	te colored
film	g solidis	n botton	of wal	<u>).                                    </u>	
top	and cl	slightly nedy; no	solids	settles.	in the
Sotte	an				
				<u> </u>	
1 mg	Ripet DIW	D 23°C	Made	9N /1.01 X	Dilution
9	926, x = .	9955-9			<del></del>
. 95	1979 195 5=.	0048			
	845 g RSD=	.48%		<u> </u>	
	hel = .	9980 ml.			
Fixed	glass = 9.	9903 ml-for	OIW		
	•				
MATE:					
Mett	ler AE160 (360-	06-01-016)	Mettler	AE200 (362-0	06-01-038)
	orius R200D (36		Corning pH Me	•	• —
Jai t	J. 123 HE000 (00	· · · · · · · · · · · · · · · · · · ·	estaing but the		
Analyst	/	Date:	Reviewer:	111	Date:
Mayba	Horpe	9/1/95	Zicher	Stelle	9/1/95
0			(		*

**3-181** 

THIS PAGE INTENTIONALLY LEFT BLANK.

The state of the s

1

#### **WATER LEACH**

THIS PAGE INTENTIONALLY

THIS PAGE INTENTIONALLY

DATE TO QC: 09/19/95

#### DATA QUALITY REVIEW

I have reviewed the following data for completeness and for compliance with project requirements.

Analyte - Water Leach - Drainable Liquid

Data Package/Report - BY-108 Core 99

Project No. - 21372

ACL Numbers - 95-07932-C1 95-07932-C2 95-07932-C3 95-07932-C4

95-07932-C5

95-07935-C1 95-07935-C2

PNU ACL Quality Representative

Date

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory Shielded Analytical Laboratory

Page ___ of ___

# Shielded Analytical Laboratory WATER LEACH

Sample Ident.	Sample Gross Wt (g)	Sample Tare Wt (g)	Sample Net Wt (g)	DIW Gross Wt (g)	DIW Tare Wt (g)	DIW Net Wt (g)	Spike المر Volume
95-07932-C1 SEG 2 DL	21.8166		<u> </u>		13,7781		VOT GAILE Y
95-07932-C2 SEG 2 DL DUP	21.6743	21.3791	0.2952	33.7486	13.4535	20.2951	
95-07932-C3 METHODS BLK	N/A	N/A	N/A	41.3352	21.4985	19.8347	
95-07932-C4 SEG 2 DL SPIKE	21.7945	21.5113	0.2832	33.6136	14.1280	19.545G	, 1996
95-07932-C5 BLANK SPIKE	N/A	140917195 21.5088	NIA	34-2553	13.5922	20.6631	. 1996
95-07935-C1 SEG 3 DL	21.8441	21.5552	0.2889	33.64le	136214	20.0202	-
95-07935-C2 SEG 3 DL DUP	21.8552	21.5756	0.2796	33.9918	13.5510	26.4408	
Вот	h 5cg	MCNTS	had	obser	vable s	olids	in the
hOTTOM O	E Ja	r. I	Alique	ed on	1/2 7/10	higuid	PARTIO

3-18

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory 325 Shielded Analytical Laboratory

	(325 SHIELDED ANALYTICAL LABORATORY)												
TI/ARF NO	TI/ARF NO.: <u>TI95-TWC-03/ASR 2388</u> PROJECT NO.: <u>21732</u> WBS NO.: <u>SAMPLE TYPE: LIQUID</u>												
	: RT STEELE	,	D					PR	EP TYPE: _	Water I	.each		
REVIEW: All J. Steele DATE: 9/8/95						CONTROLLING PROCEDURE: PNL-ALO-110							
REVIEW:	Lilley	Stule	DATE:	9/8/	95		QAI	PLAN:	MCS-033	IMPAC	T LEVEL: _		
		CLIENT: KURT		,			TANK	ID:B	Y-108	· · ·			
WORK PACKAGE NUMBER	ALO NUMBER	PROCEDURE	ANALYTE OR ANALYSIS	SAMPLE WT	WATER WT (g)	TOTAL VOL (mL)	SPIKE ID	SPIKE VOL (mL)	DILUTION FACTOR	DILUTION MATRIX	PIPET CALIB (mL)	MISC	
K28867	95-07932-C1	PNL-ALO-212	IC	0.2855	19.0847						. 1996.	SAMP	
	95-07932-C2		TOC PRIZONS	0.2952	20.2951		_	<u></u>				DUP	
	95-07932-C3				19.8367							BLANK	
	95-07932-C4			l/	19.5456		75083/163	·/994				MS	
	95-07932-C5				20.6631							BLK SPK	
	95-07935-C1			0.2189	20,0202							SAMP	
	95-07935-C2			0.2796	20.4408							DUP	
								<u></u>					
							<u> </u>			<u> </u>			
										<u></u>			
<u></u>													

SAMPLE PREP SHEET

WHC-SD-WM-DP-145, REV. 1

PAGE __1_ OF __1_

			(325 SH		IPLE PREF ANALYTI		BORATO	RY)					
TI/ARI	F NO.: <u>T195-TWC-03/</u>	ASR 2388 PROJE	CT NO.: <u>21732</u>	WE	3S NO.:			SAN	MPLE TYPE:	LIQU	ID.		
ISSUE	D BY: RT STEEL	LE	D	ATE: <u>8/3</u>	1/95			PR	EP TYPE:	Water	Leach		
ANAL'	vst: Flaust w: Juh	uthorpes	DATE:	2/2/1	25		CONTRO	LLING PRO	CEDURE: _	PNL-AL	O-110		,
REVIE	w: Such	1 Stules	DATE:	9/8/	195		QA	PLAN:	MCS-033	IMPAC	T LEVEL:		.
			URT SILVERS										\ ₹
WORK PACKA NUMBE	R	PROCEDURE	ANALYTE OR ANALYSIS	SAMPLE WT	WATER WT (g)	TOTAL VOL (mL)	SPIKE ID	SPIKE VOL (mL)	DILUTION FACTOR	DILUTION MATRIX	PIPET CALIB (mL)	MISC	WHC-SD-WM-DP-
K2894	95-07932-C1	PNL-ALO-211	ICP	0.2855	19.0847							SAMP	Š
dinke.	95-07932-C2			0.2952	20.2951							DUP	<b>』</b> │
	95-07932-C3		(ATS	-8-95)	49,5454	19.8367	1			<u></u>		BLANK	15
ļ	95-07935-C1			0.2897	20.0703		ļ	1		ļ	ļ	SAMP	
<b> </b>	95-07935-C2			02796	20.4408		<b> </b>	ļ		ļ	<b></b>	DUP	]#
<b> </b>		<u> </u>					ļ	<u> </u>			ļ	<u> </u>	1
ļ		<u> </u>		<u></u>			<b> </b>			<b> </b>	ļ		
	<b>-</b>	-		<u> </u>		ļ	<b> </b>	<u> </u>			<b> </b>	<del> </del>	-
		-					-	ļ. ———			<b></b>	<b> </b>	-
								-			<b> </b>	<b> </b>	-
		1				<del>-</del>				<u> </u>	<b></b>		-
							<u> </u>					ļ	1
									<del></del>	!			1 .

3-18

PAGE __1_ OF __1_

DATE TO QC: 09/19/95

#### DATA QUALITY REVIEW

I have reviewed the following data for completeness and for compliance with project requirements.

Analyte - Water Leach

Data Package/Report - BY-108 Core 99

Project No. - 21372

ACL Numbers -	95-07941-C1 95-07941-C5	95-07941-C2	95-07941-C3	95-07941-C4
	95-07942-Cl	95-07942-C2		
	95-07943-C1	95-07943-C2		
	95-07944-C1	95-07944-C2		
	95-07945-Cl	95-07945-C2		
	95-07946-Cl	95-07946-C2		
	95-07947-C1	95-07947-C2		
	95-07948-C1	95-07948-C2		

PAL ACL Quality Representative

Date

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory Shielded Analytical Laboratory

Page <u>1</u> of <u>3</u>

# Shielded Analytical Laboratory WATER LEACH

Tank <u>BY-108</u>	Core(s)99
Project Id: 21372	WP Number: <u>K28864</u>
TI Number: TI95-TWC-03	Procedure: PNL-ALO-103

Sample Ident.	Sample Gross Wt (g)	Sample Tare Wt (g)	Sample Net Wt (g)	DIW Gross Wt (g)	DIW Tare Wt (g)	DIW Net Wt (g)	Spike <del>Volume</del> g.
95-07941-C1 SEG 1	91, 6629	91.1490	0.5139	89.0226	38.8388	50.1838	
05-07041-02	83./335			90.2340	40.2525	49.9815	
95-07941-C3 METHODS BLK*		74.8676		125.3492	74.8674.	50.4806	
95-07941-C4 MATRIX SPIKE	84.6592	84.1619	0.4973	945467	42.6344	51.9123	85,1769
95-07941-C5 SPIKE CONT.	85.857 I	35,3388	0.5183	89.5361	38.7847	50.7517	
95-07942-C1 QTR SEG 2A	86.8315	86.3043	0.5152	42.2424	41.9017	503407	
95-07942-C2 QTR SEG 2A DUP	84.7279	84.2228	0.5051	92.8325	41.6529	51.1836	
95-07943-C1 QTRA SEG 2D	46.1453	35.6115	0.5738	96.3848	43.1204	53.2644	
95-07943-C2 QTR SEG 2D DUP	89.494D	88.8780	0.6160	92. <i>4</i> 129	41.8188	50.8241	

Spike Id: TANK SPIKE FOR SAL PREP. Spike Id 950832ICSP1

spike for spl frep.	. Spike Id 9508311	CS1 <u>1</u>
(360-06-01-016)	Mettler AE200 (362	2-06-01-038)
00D (360-06-01-024)		
Date:	Reviewer:	Date:
9/6/85	- Red Stell	9/1/95
		-7/
	O (360-06-01-016)  DOD (360-06-01-024)  Date:	Date: Reviewer:

3-188

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory Shielded Analytical Laboratory

Page ___ of ____

# Shielded Analytical Laboratory WATER LEACH

Tank <u>BY-108</u>	Core(s)99
Project Id: 21372	WP Number: <u>K28864</u>
TI Number: T195-TWC-03	Procedure: PNL-ALO-103

Sample Ident.	Sample Gross Wt (g)	Sample Tare Wt (g)	Sample Net Wt (g)	DIW Gross Wt (g)	DIW Tare Wt (g)	DIW Net Wt (g)	Spike Volume
95-07944-C1 QTR SEG 3A	84.3989	45.8747	0.5242	94.7222	43.4411	51.2811	
95-07944-C2 QTR SEG 3A DUP _	89.2134	88.7311	0.4823	93.8615	42.5354	51.3321	
95-07945-C1 QTR SEG 4A	81.1099	86.6210	0.4889	93.8845	42.3392	51.5453	
95-07945-C2 QTR SEG 4A DUP	90.24 <b>66</b>	89.6430	0.6035	gg.8333	38.8147	50.0186	
95-07946-C1 QTR SEG 4B	89.4803	89.0818	0.3985	90.3757	10.3788	49.9969	
95-07946-C2 QTR SEG 4B DUP	87,1453	86.5840	0.5613	92:4692	41.4173	51.0519	
95-07947-C1 QTR SEG 4C	81.1101	80.6485	0.4616	90.9456	40.4018	<i>50.</i> 5358	
95-07947-C2 QTRA SEG 4C DUP	899728	89.4526	0.5303	90. XX48	39.9628	50.2620	

DUP	844728	0111370	موموداما	10,00010	31.1500			
Spike Id: _		<del></del>	<del>-</del>					_
M&TE:								
Mettler	AE160 (360-	06-01-016	5) _	Mett	ler AE200	(362-06-	-01-038)	
Sartoriu	ıs R200D (361	0-06-01-0	24)					
Analyst:		Date:	٠	Reviewe	r:	ا ر	Date:	
Flaghe	Horge-	9/4/3	95—	- Ju	KJ	tule.	9/7/9	73
			3- <b>18</b>	9			,	

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory Shielded Analytical Laboratory

Page <u>3</u> of <u>3</u>

### Shielded Analytical Laboratory WATER LEACH

	Tank _	BY-108	Cor	.e(s)	99		
Project Id: <u>21</u> 3	372				WP Numb	er: <u>K2886</u>	4
TI Number: <u>TI</u>	95-TWC-03				Proce	dure: PNL	-ALO-103
Sample Ident.	Sample Gross Wt (g)	Sample Tare Wt (g)	Sample Net Wt (g)	DIW Gross Wt (g)	DIW Tare Wt (g)	DIW Net Wt (g)	Spike Volume
95-07948-C1 QTR SEG 4D	88.5036	88.0085	0.4951	93,9045	42.1162	51.7883	
95-07948-C2 QTR SEG 4D DUP	87.1724	86.5109	0.6615			<u>डा.क्ष्ट्र</u>	
0,5 ml	pipet	CALI	Bration		SPILE	Addi	ron
0.49109	<u>X</u> -	0.4923		DIW	<u>@</u> 24	• (	
0.4898 3	S=	. ØØZZ					
0.4952g	RSD=	0,44%					
0,4938	N =	7					
0.4917	DLY	:432kmg	<u>.                                    </u>				
Spike Id:							Additional to the state of the
M&TE:							
✓ Mettler AE	160 (360-	06-01-016		Mett	ler AE200	(362-06-	01-038)
Sartorius	R200D (36	0-06-01-0	24)				
Analyst:		Date:		Reviewe	: //,	D	ate:
Manglatto	gread	9/6/9	5	_	Mu	·lu	9/7/95
	U	, .		/	-		[/

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory 325 Shielded Analytical Laboratory

	·		(325 SI	<b>-</b>	IPLE PREP ANALYTIC		ORATO	RY)				
TI/ARF NO	D.: <u>T195-TWC-03//</u>	ASR 2388 PROJEC	T NO.: <u>21732</u>	WE	3\$ NO.:		_	SAMP	LE TYPE: _	SLUDG	E	
ISSUED B	Y: <u>RT STEEL</u>	Ε	C	ATE: <u>8/3</u>	1/95			PR	EP TYPE: _	Water I	Leach	<u></u>
ANALYST	Rich	1. Stale	DATE:	9/	7/55		CONTRO	LLING PROC	CEDURE:	PNL-AL	0-110	
DEMEN!	1	Subseque	DATE	9/2	19,-	•	QA.	PLAN:	MCS-033	IMPAC	T LEVEL:	11
REVIEW.	May		RT SILVERS								•	
WORK PACKAGE NUMBER	ALO NUMBER	PROCEDURE	ANALYTE OR ANALYSIS	SAMPLE WT	WATER WT (g)	TOTAL VOL (mL)	SPIKE 10	SPIKE VOL (mL)	DILUTION FACTOR	DILUTION MATRIX	PIPET CALIB (mL)	MISC
K18966	95-07941-C1	PNL-ALO-211	ЮР		0.5/37	50.838						SAMP
	95-07941-C2				1	49.9815				<u> </u>		DUP
	95-07941-C3					50.4806						BLANK
	95-07942-C1				0.5152	50.3407						SAMP
	95-07942-C2				0.5051	51.1836						DUP
	95-07943-C1				0.5738	53.2644		<b></b>		<u> </u>		SAMP
	95-07943-C2			_	0.6160	50 8241		<u> </u>	<b></b>	-	ļ	DUP
	95-07944-C1			<u> </u>	0.5242	51.2811			ļ	<u> </u>	<b></b>	SAMP
	95-07944-C2				0.4823	513321		ļ <u>.</u>	ļ		ļ	DUP
	95-07945-C1				0.4887	51.5453		<u> </u>		<u></u>	ļ. <u>.</u>	SAMP
	95-07945-C2			<b></b>	0.6835	50.0186				<b></b>	-	DUP
	95-07946-C1			1	0.3985	49.5969		ļ				SAMP
	95-07946-C2			<u> </u>	0.5613	51.0519		ļ	<b> </b>	<b></b>	<b></b>	DUP
	95-07947-C1				0.4616	50.5358					J	SAMP

PAGE _ 1 OF _ 2

II (325 SHIELDED ANALYTICAL L	SAMPLE PREP SHEET (325 SHIELDED ANALYTICAL LABORATORY)										
TI/ARF NO.: <u>Ti95-TWC-03/ASR 2388</u> PROJECT NO.: <u>21732</u> WBS NO.:											
ANALYST: Sich of Steele DATE: 8/31/95  REVIEW: DATE: 9/7/85  DATE: 9/7/85	CONTROLLING PROCEDURE: PNL-ALO-110										
REVIEW: Thugh April DATE: 9/7/95	QA PLAN: MCS-033 IMPACT LEVEL: II										
CLIENT: KURT SILVERS CORE ID: 99											
WORK ALO PROCEDURE ANALYTE SAMPLE WATER TOTAL OR ANALYSIS WT WT (g) WT (mL)	. ID (mL) FACTOR MATRIX CAUB										
12 K2586 95-07947-C2 PNL-ALO-211 ICP 0.5702 50.7620	DUP										
95-07948-C1 0.495/ 51.7883	SAMP										
95.07948-C2 0,6615 51,8335	DUP										
	<del></del>										

WHC-SD-WM-DP- 145, REV. (

PAGE 2 OF _

			(325 SH		IPLE PREP			RY)	<u> </u>	ر. - المستخترين		
TI/ARF NO	D.: <u>T195-TWC-03/</u>	ASR 2388 PROJEC	CT NO.: <u>21732</u>	WB	BS NO.:			SAME	PLE TYPE: _	SLUDO	3E	
ISSUED BY: RT STEELE DATE: 8/31/95							PREP TYPE: Water Leach					
REVIEW: Thus DATE: 9/7/95  REVIEW: DATE: 9/2/95					·	CONTRO	LLING PRO	CEDURE:	PNI -Al			
ANALISI.	12/	1	OAIL.	2/2/2			001111101					
REVIEW:	Allangh	notogen	DATE:	9/2/9	5		QA I	PLAN:	MCS-033	IMPAC	CT LEVEL:	!
	0		RT SILVERS					ID: <u>E</u>	Y-108	<del></del>		
WORK PACKAGE NUMBER	ALO NUMBER	PROCEDURE	ANALYTE OR ANALYSIS	SAMPLE WT (5)	WATER WT (g)	TOTAL VOL (mL)	SPIKE ID	SPIKE VOL	DILUTION FACTOR	DILUTION MATRIX	PIPET CALIB (mL)	MISC
K28867	95-07941-C1	PNL-ALO-212	łC	0.5139	50.1838						0.4836	SAMP
· · · · · · · · · · · · · · · · · · ·	95-07941-C2			0.4972	49.9815					<u></u>	<u> </u>	OUP
	95-07941-C3				50.4806			<b>1</b>	<u> </u>		<u> </u>	BLANK
	95-07941-C4			0.4973	51.9123		311	0.5177			<u> </u>	MS
	95-07941-C5		RTS 9-7-45	0.5183	50.7517		n5u84ItE	0.5183		<u> </u>	<u> </u>	SPK BLK
	95-07942-C1			0.5152	50,3407							SAMP
	95-07942-C2			0.5051	51.1836	<u></u>					<b></b>	DUP
	95-07943-C1			0.5738	53.2644	<u> </u>	_	<u></u>				SAMP
	95-07943-C2	J		0.6160	50.8241						<u> </u>	DUP
	95-07944-C1			0.5242	51.2811		<b></b>			<u> </u>	ļ	SAMP
	95-07944-C2			0.4823	51.3321	<b></b>						DUP
	95-07945-C1	<b>_</b>		0.4889	51.5453					<b> </b>	<u> </u>	SAMP
	95-07945-C2			0.6035	50.0186							DUP
	95-07946-C1			0.3985	49.9969						<b> </b>	SAMP
	95-07946-C2			0.5613	51.0519			 			ļ	DUP
	95-07947-C1	l l	1	0.4616	50 5358	Ī.	l l		H	H		SAMP

PAGE _1_ OF _2_

				SAM	PLE PREP	SHEET	•						
			(325 SF	HELDED A	ANALYTIC	CAL LA	BORATOR	(Y)					
TI/ARF NO.: <u>TI95-TWC-03/ASR 2388</u> PROJECT NO.: <u>21732</u> WBS NO.:							SAMP	LE TYPE: _	SLUDGE				
ISSUED B	ISSUED BY: DATE: DATE:						PREP TYPE: Water Leach  CONTROLLING PROCEDURE: PNL-ALO-110						
ANALYST:													
REVIEW:	The.	Intopen	DATE:	9/2/9	<u>, —</u>		QA F	PLAN:	MCS-033	IMPAC	T LEVEL:		
		CLIENT: KUI					TANK	1D: <u>B</u>	Y-108	_			
WORK PACKAGE NUMBER	ALO NUMBER	PROCEDURE	ANALYTE OR ANALYSIS	SAMPLE WT (9)	WATER WT (g)	TOTAL VOL (mL)	SPIKE	SPIKE VOL (mL)	DILUTION FACTOR	DILUTION MATRIX	PIPET CALIB (mL)	MISC	
K28867	95-07947-C2	PNL-ALO-212	Ю	0.5207	50. 2620							. DUP	
	95-07948-C1			II .	51.7883							SAMP	
	95-07948-C2			0.6615	51.8335		_			-		DUP	
<u> </u>				<del> </del>	<u> </u>					<u> </u>	<u> </u>	<del> </del>	
			_	-	<b></b>		-		ļ	<b> </b>		1	
		·		<u> </u>									
												ļ	
				-	<u></u>			<u> </u>				<b> </b>	
				<b> </b>	ļ	ļ	-	<u></u>		<b> </b>		<del> </del>	
<u> </u>				<u> </u>			-						
					ļ		_			-	ļ		
				<u> </u>			_	ļ			<b></b>		
ı	I.		l l	I	H .	1			A	J			

WHC-SD-WM-DP- 145, REV.

#### **ACID DIGESTION**

THIS PAGE INTENTIONALLY

DATE TO QC: 09/19/95

#### DATA QUALITY REVIEW

I have reviewed the following data for completeness and for compliance with project requirements.

Analyte - Acid Digest (Drainable Liquid)

Data Package/Report - BY-108 Core 99

ACL Quality Representative

Project No. - 21372

ACL Numbers - 95-07932-A1 95-07932-A2 95-07932-A3 95-07932-A4

95-07932-A5

95-07935-A1 95-07935-A2

**3-196** 

Date

PNL-ALO-128

Nitric and Hydrochloric Acid Extraction of High-level Radioactive Liquids and TCLP Leachates

3-197

Batterle Pacific Northwest Laboratory
Aralytical Chemistry Laboratory
325-SAL-SEPL /1 12:45 V WHC-SD-WM-DP-145, REV. 1 White flowland noted apon acid additions 250 vl pipet Check Pyper Check (GEA) DIW@ 25°C 4,9547 X=4.9812 4.9917 5=0.0175 5.0001 4/9553 RSD= 0.35% 4.9750 n=5

Reviewer Tickel State DAte: 9/19/85

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory 325 Shielded Analytical Laboratory

			(325 SI	SAM HELDED	IPLE PRE			RY)					
TI/ARF NO	TI/ARF NO.: T195-TWC-03/ASR 2388 PROJECT NO.: 21732 WBS NO.: SAMPLE TYPE: DRAINABLE LIQUID												
ISSUED B	Y: RT STEEL			PREP	TYPE:	ACID DIG	ESTION						
								LLING PRO	CEDURE: _	PNL-ALC	D-110		
REVIEW:	2011									IMPAC		11	
	CLIENT: KURT SILVERS CORE ID: 99						TANK	ID:E	3Y-108	·			AHI MHO
WORK PACKAGE NUMBER	ALO NUMBER	PROCEDURE	ANALYTE OR ANALYSIS	SAMPLE WT	WATER WT (g)	TOTAL VOL (mL)	SPIKE ID	SPIKE VOL (mL)	DILUTION FACTOR	DILUTION MATRIX	PIPET CALIB (mL)	MISC	SD-WW-DP
K28866	95-07932-A1	PNL-ALO-211	ЮР									SAMP	
	95-07932-A2						<u> </u>		ļ	<u> </u>	ļ	DUP	ľ
	95-07932-A3			<u> </u>	<u> </u>					<u> </u>	ļ	BLANK	13
	95-07932-A4			<b> </b>		<b>↓</b>	<u> </u>	ļ <u> </u>		<b>.</b>		MS	
	95-07932-A5										<u></u>	SPK CONT	REV
	95-07935-A1					<u> </u>				<b></b>		SAMP	┢
	95-07935-A2		<u>_</u>	<b> </b>		<b></b>			<u> </u>	<u> </u>		DUP	-
				<b>-</b>			-	1	<del> </del>	<b>-</b>			-
					J	<del> </del>	<del></del>		<b> </b>	1	1		1
				·									]
				<u> </u>					<u> </u>	<u> </u>	<u> </u>	ļ	1
		<u> </u>		-		<b></b>		1		<b> </b>	<u> </u>	1	1
			1	1	ļ	H					<u> </u>		J

PAGE __1_ OF __1

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory 325 Shielded Analytical Laboratory

	SAMPLE PREP SHEET (325 SHIELDED ANALYTICAL LABORATORY)													
TI/ARF NO	TI/ARF NO.; TI95-TWC-03/ASR 2388 PROJECT NO.; 21732 WBS NO.; SAMPLE TYPE: DRAINABLE LIQUID													
ISSUED BY	Y: RT STEELI		D			PREP	TYPE:	ACID DIG	ESTION		.			
ANALYST	Flands	Hopen	DATE:	9/8/9	5		CONTRO	LLING PROC	CEDURE:	PNL-AL	0-110			
REVIEW:	Trace of	Steel	DATE:	9/11/5	-		QA	PLAN:	MCS-033	IMPAC	T LEVEL:		.	
	CLIENT: KURT SILVERS CORE ID: 99 TANK ID: BY-108												N.	
WORK PACKAGE NUMBER	CKAGE NUMBER OR WT WT (g) VOL ID (mL) FACTOR MATRIX CA											MISC	WHC-3D-WM-DF-	
SEE BELOW	95-07932-A1	SEE BELOW	SEE BELOW									samp		
	95-07932-A2							<u> </u>				dup	1	
<u> </u>	95-07932-A3	ļ			<b>]</b>	-∦		<b></b>	<b></b>	<b></b>	<u> </u>	blank	_[	
	95-07935-A1		<u> </u>		<b> </b>			<b> </b>	<u></u>		ļ	semp	占	
	95-07935-A2	<b>]_</b>	<u></u>	<b>}</b> -	<b>}</b>	<u> </u>	_}	<u> </u>	<b>]</b>	<u> </u>	<b> </b>	dup	- K	
		<u> </u>	_ <del> </del>		<b> </b>		-	<del> </del>				<b>-</b>	╂	
				<b></b>	<b>}</b>	<del>                                     </del>	<del>-</del>	<b> </b>	<b> </b>	·}	<del> </del>	<del> </del>	┪	
		1	<del></del>			┨──	1	<u> </u>		<b> </b>		<b> </b>	1	
			<u> </u>		₩	1	╽			1		1		
K28870		PNL-ALO-421	T. ALPHA											
K28872		PNL-ALO-450	GEA										]	
K28873		PNL-ALO-431	T. BETA	<u></u>	<u></u>		<u></u>			<u></u>	PAGE	1 OF 1		

you received 9.9919 ml of each of samples above.

## **KOH FUSION**

DATE TO QC: 09/19/95

WHC-SD-WM-DP-145, REV./

#### DATA QUALITY REVIEW

I have reviewed the following data for completeness and for compliance with project requirements.

Analyte - KOH Fusion

Data Package/Report - BY-108 Core 99

Project No. - 21372

<b>ACL Numbers</b>	-	95-07942-H1	95-07942-H2	95-07942-H3
		95-07943-H1	95-07943-H2	
		95-07944-H1	95-07944-H2	
		95-07945-H1	95-07945-H2	95-07945-H3
		95-07947-H1	95-07947-H2	
		95-07948-H1	95-07948-H2	

PNLCACL Quality Representative

Date

WHC-SD-WM-DP-145, REV. / Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory Shielded Analytical Laboratory

Page 1 of 2

## Shielded Analytical Laboratory FUSIONS

Tank	BY-108	Core(s)	99

Project Id: TWC/21372

WP Number: <u>K28862</u>

Test Instruction: T195-TWC-03

Procedure: PNL-ALO-115

Sample Ident.	Wet Sample Gross Wt (g)	Wet Sample Tare Wt (g)	Wet Sample Net Wt (g)	Dry Sample Gross Wt (g)	Dry Sample Tare Wt (g)	Dry Sample Net Wt (g)
95-07942-H1 QTR SEG 2A	54.7/45	54.5993	0.1152			
95-07942-H2 QTR SET 2A DUP	48.745-9.	48.6350	0.1109			
95-07942-H3 METHODS BLANK	××××	* * * *				
95-07943-H1 QTR SEG 2D	54.386/	54.0499	0.3362			
95-07943-H2 QTR SEG 2D DUP	55.4510	55,1247	0.3263			
95-07944-H1 QTR SEG 3A	55,7204	55.5992	0.1212			
95-07944-H2 QTR SEG 3A DUP	54.4753	54.3 ³³³	0.1420			
	Jdent.  95-07942-H1 QTR SEG 2A  95-07942-H2 QTR SET 2A DUP  95-07942-H3 METHODS BLANK  95-07943-H1 QTR SEG 2D  95-07943-H2 QTR SEG 2D DUP  95-07944-H1 QTR SEG 3A  95-07944-H2 QTR SEG 3A	Sample Gross Wt (9)  95-07942-H1 QTR SEG 2A  95-07942-H2 QTR SET 2A DUP  95-07942-H3 METHODS BLANK  95-07943-H1 QTR SEG 2D  95-07943-H2 QTR SEG 2D DUP  95-07944-H1 QTR SEG 3A  95-07944-H2 QTR SEG 3A DUP  Sample Gross Wt (9)  54.7145  54.7145  54.715  55.7204	Sample Gross Wt (g)  95-07942-H1 QTR SEG 2A  95-07942-H2 QTR SET 2A DUP  95-07942-H3 METHODS BLANK  95-07943-H1 QTR SEG 2D  95-07943-H2 QTR SEG 2D  95-07944-H2 QTR SEG 3A DUP  Sample Tare Wt (g)  48.745-9.  48.635-0  48.745-9.  48.635-0  54.0499.  55-07944-H1 QTR SEG 2D  55.1247  95-07944-H2 QTR SEG 3A DUP	Sample Gross Wt (g) Sample Tare Net Wt (g) 95-07942-H1	Sample Gross Tare Net Gross Wt (g)  95-07942-H1 OTR SEG 2A  95-07942-H2 OTR SET 2A DUP  95-07942-H3 METHODS BLANK  95-07943-H1 OTR SEG 2D  95-07943-H2 OTR SEG 2D  95-07944-H2 OTR SEG 3A  DUP  Sample Red Sample Net Wet (g)  94-3-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9	Sample Gross Wt (g) Sample Net Wt (g) Sample Gross Wt (g) Sample G

____ Mettler AE160 (360-06-01-016)
____ Sartorius R200D (360-06-01-024)
_____ Sartorius R200D (360-06-01-024)

Analyst:	Date:	Reviewer:	, Date:
Alan South	ser 9/11/25	- Licher A	tele 9/11/95
- hard			
		/	

3-203

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory Shielded Analytical Laboratory 2 A: 1/1/1
Page 2 of 2

## Shielded Analytical Laboratory FUSIONS

Iank	<u>BY-108</u>	core(s)	99

Project Id: TWC/21372

WP Number: K28852

Test Instruction: <u>T195-TWC-03</u>

Procedure: PNL-ALO-115

Sample Ident.	Wet Sample Gross Wt (g)	Wet Sample Tare Wt (g)	Wet Sample Net Wt (g)	Dry Sample Gross Wt (g)	Dry Sample Tare Wt (g)	Dry Sample Net Wt (g)
95-07945-H1 QTR SEG 4A*	53,3293	53.2216	0.1077			
95-07945-H2 QTR SET 4A DUP	56.4346 50.4613 919600	56.3194 56.2912 9715583	0.1172 0.1701			
95-07945-H3 METHODS BLANK						
95-07947-H1 QTR SEG 4C	55.7426	55. 6337	0.1089			
95-07947-H2 QTR SEG 4C DUP	54.1167 34.007	53.9722	0,1445	,		
95-07948-H1 QTR SEG 4D			0.0988			
95-07948-H2 QTR SEG 4D DUP	54.9214	54.8338	0.0876			
	95-07945-H1 QTR SEG 4A* 95-07945-H2 QTR SET 4A DUP 95-07945-H3 METHODS BLANK 95-07947-H1 QTR SEG 4C 95-07947-H2 QTR SEG 4C DUP 95-07948-H1 QTR SEG 4D 95-07948-H2 QTR SEG 4D	Sample Gross Wt (g)  95-07945-H1 GTR SEG 4A 53.3293  95-07945-H2 GTR SET 4A DUP 55-07945-H3 METHODS BLANK  95-07947-H1 GTR SEG 4C S5-07947-H2 GTR SEG 4C DUP 55-07948-H1 GTR SEG 4D 55-07948-H2 GTR SEG 4D DUP 55-07948-H2 GTR SEG 4D DUP 54-9214 DUP	Sample Gross Tare Wt (g) 95-07945-H1 QTR SEG 4A 53.3293 53.2216 95-07945-H2 QTR SET 4A DUP 55.07945-H3 METHODS BLANK 95-07947-H1 QTR SEG 4C 54.0420 55.6337 95-07947-H2 QTR SEG 4C 54.0420 55.6337 95-07948-H1 QTR SEG 4D 52.8227 52.7239 95-07948-H2 QTR SEG 4D 54.9214 54.8338 DUP 54.9214 54.8338	Sample Gross Ht (g) Sample Net Ht (g) S5-07945-H1 (G) S3.3293 S3.2216 O.1077 (G) S5-07945-H2 (G) S6.3194 (G) S6.3194 (G) S5-07945-H3 (G) S6.3194 (G) S6.3194 (G) S5-07945-H3 (G) S6.3194 (G) S5-07947-H1 (G) S6.329 (G) S5-07947-H2 (G) S5-07947-H2 (G) S5-07947-H2 (G) S5-07948-H1 (G) S5-07948-H2 (G) S5-07948-H2 (G) S5-07948-H2 (G) S5-07948-H2 (G) S5-07948-H2 (G) S6-07948-H2 (G) S6-079	Sample Gross Tare Net Gross Wt (g) Wt (g) Wt (g) (g)  95-07945-H1 QTR SEG 4A* 53.3293 53.2216 0.1077  95-07945-H2 QTR SET 4A DUP 50.44.33 64.3194 0.1172  95-07945-H3 METHODS BLANK  95-07947-H1 QTR SEG 4C 54.1147 53.97.22 0.1089  95-07948-H1 QTR SEG 4D 52.8227 52.7239 0.0988  95-07948-H2 QTR SEG 4D 54.9214 54.8338 0.0876 DUP	Sample Gross Tare Net Wt (g) Wt (g) Wt (g) Sample Gross Wt (g) Wt (g) Wt (g) Sample Gross Wt (g) Sample Gross Wt (g) Sample Gross Wt (g) Sample Gross Wt (g) Score

MATE: #15 *Skm 2709 54.1551 54.0560 0.091 | Mettler AE200 (362-06-01-038)

___ Sartorius R200D (360-06-01-024)

Analyst:	Date:	Reviewer:	Date:
Meal 1	gan 9/4/20	Noch Stule	9/11/85
	Barcode # 80804	7	77

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory 325 Shielded Analytical Laboratory

						P SHEET						
			(325 SF	HELDED A	ANALYT	ICAL LAE	BORATO	RY)				
TI/ARF NO	).: <u>TI95-TWC-03/</u> /	ASR 2388 PROJECT	NO.: <u>21732</u>	WB	\$ NO.:	· · · · · · · · · · · · · · · · · · ·	<del></del>	SAMP	PLE TYPE: _	SLUDG	E	
ISSUED BY	Y: RT STEEL	E	D	ATE: <u>8/31</u>	/95			PREP	TYPE:	NI/KOH F	USION	
ANALYST;	May	Stopen	DATE:	9/11/	95		CONTRO	LLING PROC	CEDURE:	PNL-AL	Q-110	
REVIEW:	Just.	Stul-	DATE:	9/11/9	5		QA	PLAN:	MCS-033	IMPAC	T LEVEL:	
	2	TANK	ID: <u>B</u>	Y-108	_							
WORK PACKAGE NUMBER	ALO NUMBER	PROCEDURE	ANALYTE OR ANALYSIS	SAMPLE WT	WATER WT (g)	TOTAL VOL (ml.)	SPIKE ID	SPIKE VOL (mL)	DILUTION FACTOR	DILUTION MATRIX	PIPET CALIB (mL)	MISC .
SEE BELOW	95-07945-H1	SEE BELOW	SEE BELOW	0,1077		100		The second secon				SAMP
	95-07945-H2			1.1172			]					DUP
	95-07945-H3											BLANK
	95-07946-H1T	'		0.1002								SAMP
	95-07946-H2T		ļ	0.0992			<u> </u>					DUP
	95-07946-HCB ¹		<b></b>							<u> </u>		BLANK
	95-07947-H1		<u> </u>	0.1089		$\bot$	<u> </u>	1	·	<u> </u>		SAMP
	95-07947-H2			2747.0			<u> </u>					DUP
	95-07948-H1			8870.0			<u> </u>					SAMP
	95-07948-H2			0.0376		1 1	1					DUP
K28870		PNL-ALO-421	T. ALPHA				ļ					
K28871		PNL-ALO-422/423	AEA:				ļ					
K28872		PNL-ALO-450	GEA				Yours	CEIV C	9.98	39 ml		
K28873		PNL-ALO-431	T. BETA			<b></b>	Pol.	ach	ample	·		
K28874		PNL-ALO-433/431	Sr-90			<u> </u>	$\mathcal{D}$					
۳ <b>1987</b> 5		PNL-ALO-445	U-LASER								DACE 4	<u> </u>

WHC-SD-WM-DP-145, REV. 1

WHC-SD-WM-DP-145, REV. 1

9/11/95 Battelle Pacific Northwest Laboratories

Analytical Chemistry Laboratory

Sheetled Analytique Laboratory

5. Onl pyper calibration Cleck (GEA)

Fage 10P)

4.96889 X=4.97729 4.96889 X=4.97729 4.96929 S=0.0086 4.98229 RSD=0.179. 4.98639 77=5 4.98159 Luy=4.9919ml cell 2 temperature: 25°C

Aralyst: Elic Smedt Date: 9/19/95
Reviewer July Stule Date: 9/18/95

3-20

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory 325 Shielded Analytical Laboratory

			(325 SH	SAM! IELDED /	ANALYTI		ORATOR	RY)		•	•		
TI/ARF NO	).: <u>T195-TWC-03/A</u>	SR 2388 PROJECT N	NO.: <u>21732</u>	WB	S NO.:		_	SAMP	LE TYPE: _	SLUDG	E		
ISSUED BY	r:RT STEELE		D/	ATE: <u>8/31</u>	/95			PREP	TYPE:	NI/KOH F	USION		
ANALYST:	Flans	Morpe	DATE:	9/11/	195		CONTROL	LING PROC	EDURE:	PNL-AL(	<u> </u>	<u></u>	
REVIEW:	NALYST:						QA I	PLAN:	MCS-033	IMPAC	T LEVEL:	11	
		CLIENT: KURT	99	TANK	1D:B	Y-108	_		<del>,</del>				
WORK PACKAGE NUMBER	ALO NUMBER	PROCEDURE	ANALYTE OR ANALYSIS	SAMPLE WT	WATER WT (g)	TOTAL VOL (mL)	SPIKE ID	SPIKE VOL (mL)	DILUTION FACTOR	DILUTION MATRIX	PIPET CALIB (mL)	MISC	
SEE BELOW	95-07941-H1T	SEE BELOW	SEE BELOW	0,1005		100						SAMP	-WAA-
	95-07941-H2T			0.1026								DUP	7
	95-07941-HCB					<del>                                     </del>	ļ			<b> </b>	ļ <u></u>	BLANK	13
	95-07942-H1			0.1152		1	<b></b>			<b></b>	<b> </b>	SAMP	╨
	95-07942-H2			0.1109			ļ		<u> </u>	<b> </b>	-	DUP	굮
	95-07942-H3			<b></b>	ļ	<b> </b>			ļ	<b> </b>	<b>}</b>	BLANK	4<
	95-07943-H1			0.3362	 	<del>                                     </del>	<u> </u>		<b></b>	<b> </b>	<u> </u>	SAMP	╀
	95-07943-H2			0.3263	ļ	<b></b>	ļ	<u> </u>	<u> </u>	<b> </b>	<b> </b>	DUP	4
<u> </u>	95-07944-H1			0.1212	<b></b>	.	<u> </u>	ļ	<b> </b>	<b> </b>	<b> </b>	SAMP	4
	95-07944-H2			0.1420	<b></b>	-  ✓	<b> </b>	ļ	<b> </b>	<b></b>	<b> </b>	DUP	4
K28870		PNL-ALO-421	T. ALPHA	<b> </b>	ļ	<b> </b>	ļ		ļ	ļ <del></del>	<u> </u>	<b>.</b>	-
K28871		PNL-ALO-422/423	AEA	<b></b>		Yww	CC+1V6	19.98	39 mL	0+	<b> </b>	<del> </del>	-
K28872		PNL-ALO-450	GEA	ļ	ļ	/ eac	M-SA	mple.	<b> </b>	<b></b>	ļ	<b> </b>	4
K28873		PNL-ALO-431	T. BETA	ļ	<u> </u>	-	<b> </b>	<u> </u>	<b>.</b>	ļ	<b> </b>	<b></b>	-
K28874		PNL-ALO-433/431	Sr-90			<b></b>	<b> </b>		<del></del>	<b></b>	<u> </u>	<b></b>	4
K28875		PNL-ALO-445	U-LASER		L	<u> </u>	<u>J</u>	<u> </u>			<u></u>	<u></u>	1

		DATE: <u>8/31</u>	/95			PREP	TYPE:	NI/KOH F	USION	
Stopen	DATE	9/11/2	<u>,                                    </u>		CONTRO	LLING PROC	EDURE:	PNL-AL	O-110	
Stell.	DATE DATE	: <u>9/11/</u>	95		QA	PLAN:	MCS-033	IMPAC	T LEVEL:	
	JRT SILVERS	• •			TAN	( ID:B	Y-108	<del></del>		
ROCEDURE	ANALYTE OR ANALYSIS	SAMPLE WT	WATER WT (g)	TOTAL VOL (mL)	SPIKE ID	SPIKE VOL (mL)	DILUTION FACTOR	DILUTION MATRIX	PIPET CALIB (mL)	MISC
PNL-ALO-211	ICP	0,1605		100						SAMP
		0.1026	]				1		<u> </u>	DUP
<del></del>										BLANK
		0.1152								SAMP
		0.1109								DUP
		18111								BLANK
		0.3362								SAMP
		0.3263	4							DUP
		0.1212	ll .							SAMP
		0.1420			1					DUP

SAMPLE TYPE: ___

SLUDGE

WHC-SD-WM-DP-145, REV_1

PAGE _1_ OF _1_

SAMPLE PREP SHEET (325 SHIELDED ANALYTICAL LABORATORY)

TI/ARF NO.: TI95-TWC-03/ASR 2388 PROJECT NO.: 21732 WBS NO.:

0.0991

PROCEDURE

PNL-ALO-211

**Battelle Pacific Northwest Laboratories** Analytical Chemistry Laboratory 325 Shielded Analytical Laboratory

ISSUED BY:

ALO

NUMBER

95-07941-H1T

95-07941-H2T 95-07941-HCB 95-07942-H1 95-07942-H2 95-07942-H3 95-07943-H1 95-07943-H2 95-07944-H1

SRM-2109-H

REVIEW:

WORK

**PACKAGE** 

NUMBER

K28866

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory 325 Shielded Analytical Laboratory

	SAMPLE PREP SHEET (325 SHIELDED ANALYTICAL LABORATORY)											
TI/ARF NO	.: <u>TI95-TWC-03/A</u>	SR 2388 PROJEC	T NO.: <u>21732</u>	WB	S NO.:		SAMPLE TYPE: SLUDGE					
ISSUED BY	SSUED BY: RT STEELE DATE: 8/31/95						PREP TYPE: NI/KOH FUSION					
ANALYST:	ANALYST: Algustation DATE: 9/11/95  REVIEW: DATE: 9/11/95						CONTRO	LLING PROC	EDURE: _	PNL-ALC	D-110	
REVIEW:	1/04	Stule	DATE:	9/11/9	75		QA	PLAN:	MCS-033	IMPAC	T LEVEL: _	
		CLIENT: KUF									<b>,</b>	
WORK PACKAGE NUMBER	ALO NUMBER	PROCEDURE	ANALYTE OR ANALYSIS	SAMPLE WT	WATER WT (g)	TOTAL VOL (mL)	SPIKE 1D	SPIKE VOL (mL)	DILUTION FACTOR	DILUTION MATRIX	PIPET CALIB (mL)	MISC
K28866	95-07945-H1	PNL-ALO-211	ICP	0.1077		100						SAMP
	95-07945-H2			عتسم		1./_		<u> </u>		<b></b>	<b> </b>	DUP
	95-07945-H3		<u> </u>	ļ		$\bot$	<u> </u>		<u></u>	ļ	<b> </b>	BLANK
	95-07946-H1T			0.1007		<del></del>	- <b> </b>	<b></b>		<b> </b>	<b> </b>	SAMP
	95-07946-H2T			5 220.0			<b></b>	<b> </b>		<u> </u>	<b> </b>	DUP
	95-07946-HCB			<b></b>		<u> </u>	<b>. </b>	<b> </b>	<u> </u>	<b> </b>	<b></b>	BLANK
	95-07947-H1			0.1084		<del>                                     </del>	<u> </u>	<b></b>		<b> </b>	<b> </b>	SAMP
	95-07947-H2			0.1445				<b> </b>			<del> </del>	DUP
	95-07948-H1		<u> </u>	0.0988	<u> </u>	<b>_  </b>	<b></b>	<b></b>		<b></b>	<b> </b>	SAMP
	95-07948-H2 <del>2155-4445-HL)</del>	Warra William		0.0876		1	- <b> </b>	<u> </u>		<del> </del>	<b> </b>	DUP
	SRM-2109-H	-2154-11-15	_	0.0991		<u> </u>	<b>-</b>	<u> </u>		<b> </b>	<b> </b>	
				<b> </b>			<b></b>	<b></b>		<b> </b>	ļ	<b> </b>
				<b></b>		<b></b>	<b></b>	<b></b>	ļ	<del> </del>	ļ	<b></b>
				<b></b>			<b>_</b>	<b> </b>		ļ	ļ	Į
				<b></b>		_	<b></b>			<b>!</b>	<u> </u>	<b>.</b>

WHC-SD-WM-DP-145, REV. 1

WHC-SD-WM-DP-__/45, REV.__/

# Na₂O₂ FUSION

THIS PAGE INTENTIONALLY LEFT BLANK.

DATE TO QC: 09/19/95

#### DATA QUALITY REVIEW

I have reviewed the following data for completeness and for compliance with project requirements.

Analyte - Ir Fusions

Data Package/Report - BY-108 Core 99

Project No. - 21372

ACL Numbers - 95-07941-N1 95-07941-N2 95-07941-N3

95-07942-N1 95-07943-N1 95-07944-N1 95-07945-N1 95-07946-N1 95-07947-N1 95-07948-N1

PNL ACL Quality Representative

Date

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory Shielded Analytical Laboratory

Page <u>1</u> of <u>2</u>

# Shielded Analytical Laboratory FUSIONS

636,3677 Sample dent. 4-7	Wet Sample Gross Wt (g)	Wet Sample Tare Wt (g)	Wet Sample Net Wt (g)	Dry Sample Gross Wt (g)	Dry Sample Tare Wt (g)	Dry Sample Net Wt (g)
5-07941-N1 A EG 1 ->-7K-	1337	34.2354	0.1303 0.1620 2	<u> </u>		
<del>7-7</del> 95-07941-N2 SEG 1 DUP	36.6589					
95-07941-N3 METH BLANK		36.6181				
95-07942-N1 TR SEG 2/4	364918	36.3868	0.1050			
95-07943-N1 TR SEG 2D	37. 2343					
95-07944-N1 QTR SEG 3A	36.7112	36.5944	0.1328 0.1168			
TE:	9/7/95			1/95		<u>.,,                                   </u>

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory Shielded Analytical Laboratory

Page <u>2</u> of <u>2</u>

# Shielded Analytical Laboratory FUSIONS

Core(s)

ample dent.	Wet Sample Gross Wt (g)	Wet Sample Tare Wt (g)	Wet Sample Net Wt (g)	Dry Sample Gross Wt (g)	Dry Sample Tare Wt (g)	Dry Sample Net Wt (g)
5-07945-N1 TR SEG 4A	37.4115	37.3077	0.1038			
5-07946-N1 TR SEG 4B	37.5889	37.4812	0.1077			
5-07947-N1 TR SEG 4C	37.23∞	37.1254	0.1046			
5-07948-N1 TR SEG 4D	36.9533	36.8432	0.1101			
SRM 2709	36.4637	36.3009	0.1628			
	E160 (360-06 R200D (360-			_ Mettler	AE200 (36	2-06-01-038)

Battelle Pacific Northwest Laboratories Analytical Chemistry Laboratory 325 Shielded Analytical Laboratory

SAMPLE PREP SHEET (325 SHIELDED ANALYTICAL LABORATORY)												
TI/ARF NO	D.: <u>T195-TWC-03/A</u>	ISR 2388 PROJECT I	NO.: <u>21732</u>	WB	S NO.:			SAMF	PLE TYPE: _	SLUDG	E	
ISSUED B	Y: RT STEELS	<b>=</b>	D	ATE: <u>8/31</u>	1/95			PREP	TYPE:	Zr/Na2O2	FUSION	
			DATE:	9/11/	195		CONTRO	LLING PRO	CEDURE: _	PNL-AL	O-110	
REVIEW:	Bok.	1. Stule	DATE:	9/4/	95			PLAN:				!!
	(	CLIENT: KURT				99	TANK	( ID:E	3Y-108	_		
WORK PACKAGE NUMBER	ALO NUMBER	PROCEDURE	ANALYTE OR ANALYSIS	SAMPLE WT	WATER WT (g)	TOTAL VOL (mL)	SPIKE	SPIKE VOL (mL)	DILUTION	DILUTION MATRIX	PIPET CALIB (mL)	MISC
K28866	95-07941-N1	PNL-ALO-211	ICP	0.1323		100						SAMP
	95-07941-N2			0.0946			_	<u> </u>	ļ	<b> </b>		DUP
	95-07941-N3						_			<u> </u>	ļ	BLANK
	95.07942 N1	Rs 9-11	-95	0.1050	<u> </u>	<del>   </del>		1				SAMP
	95-07943-N1			0,2256	ļ					<b></b>	ļ	SAMP
	95-07944-N1			0.1328				_			ļ	SAMP
	95-07945-N1			1038	ļ	1-1-	_	<u> </u>		<b></b>	ļ	SAMP
	95-07946-N1		ļ	0.1077	1	<b>∥</b>	_			<b></b>	ļ	SAMP
	95-07947-N1			0.1046						<b>]</b>	ļ	SAMP
	95-07948-N1			0.1101		<b></b>	_			<b></b>	<b></b>	<b></b>
	SRM 2709			0.1628		1				<b></b>	ļ	<b>_</b>
								<b> </b>	<u> </u>	<u> </u>	ļ	
						<b> </b>		<b></b>		<u> </u>		<b>_</b>
					<b> </b>				1	<b></b>		
						<b></b>		<b></b>	<u> </u>		<b></b>	
					<u> </u>		1				<u> </u>	1

PAGE _1 OF _

WHC-SD-WM-DP-145, REV.)
SINGLE SHELL TANK
WASTE CHARACTERIZATION PROJECT

(

# APPENDIX B PHYSICAL PROPERTIES

**TANK BY-108 CORE 99** 

September 1995

**Pacific Northwest Laboratory** 

THIS PAGE INTENTIONALLY

WHC-SD-WM-DP-__)45, REV.___)

## **B1 - INTRODUCTION**

THIS PAGE INTENTIONALLY LEFT BLANK.

#### Introduction to Physical Properties Primary Data Package

This section of the BY-108 Core 99 Primary Data Package contains primary or "raw" data collected during preparation and analysis of physical properties on Core 99 samples.

THIS PAGE INTENTIONALLY
LEFT BLANK

## **B2 - DSC/TGA ANALYSIS**

THIS PACE INTENTIONALLY LEFT BLANK.

DATE TO QC: 09/29/95

#### DATA QUALITY REVIEW

I have reviewed the following data for completeness and for compliance with project requirements.

Analyte - DSC/TGA

Data Package/Report - BY-108 Core 99

Project No. - 21372

ACL Numbers - 7313 7313-2 95-07932 95-07932-2 7315 7315-2 7314 7314-2 95-07935 95-07935-2 7316 7316-2 7322 7322-2 7319 7319-2 7318 7318-2 7317 7313 7317-2

DNI ACI Quality Barracentative

PNL ACL Quality Representative

9-21-95

Date

#### Thermal Analysis

WHC-SD-WM-DP-145, REV. 1

Scanning Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) were performed on the unhomogenized solids and drainable liquids from Core 99 Segments 1 through 4. These two thermal analysis techniques are useful in determining the thermal stability and reactivity of the material. DSC measures heat released or absorbed while the temperature of the sample is increased at a constant rate. Data generated by the DSC analysis is often used to measure thermal decomposition temperatures, heats of reaction, reaction temperatures, melting points and solid-solid transition temperatures. TGA measures the mass of a sample while the temperature of the sample is increased at a constant rate. The TGA data is used to measure thermal decomposition temperatures, water content and reaction temperatures. Both methods can be modified to measure isothermal changes in the material and provide complimentary information.

1

The calibration of the DSC and TGA instruments were checked before running these samples. An indium standard was run on the DSC to check the temperature and enthalpy calibrations. The balance calibration of the TGA was checked with a 100 mg standard weight, and the temperature calibration was checked with a lead standard. The temperature and enthalpy calibration checks were all within 1°C and 0.2 J/g of their reported values, and the balance calibration was within 0.01 mg.

The results from the DSC and TGA analyses are reported in Tables 1-6 and 1-7, respectively. The temperature range of the scans was from ambient to 550°C, with a scan rate of 10°C per minute. These analyses were all performed in platinum pans under nitrogen cover gas.

The major transition in all of these samples was an endotherm due to water loss from the sample. This was also the major mass loss in all of the samples. The onset temperature of this transition could not be measured because the transition began at the initial temperature of the run (ambient temperature). The water loss endotherm ends at approximately 200°C. This endotherm is a complicated system of several unresolvable transitions with each sample containing slightly different proportions of these transitions.

An exotherm was identified in all quarter segment samples from Segment 4 and the drainable liquids. This exotherm has an onset temperature of between 197 and 225°C. The enthalpy of this transition varied with each quarter segment. The temperature range for this transition was from 195 to 400°C. It appears that this exotherm is commingled with some endothermic behavior which cannot be resolved; therefore, it is difficult to determine onset temperatures for each sample. The enthalpy of this transition is also dependent upon resolution of this exotherm for the commingled endotherms and the initial water loss endotherm. In most cases the most conservative approach (the largest exothermic energy) has been taken.

In Segments 1 through 3 a second endotherm is observed. Several 'transitions are observed in this endotherm and the onset temperature varies depending upon the size of the first transition in comparison with the second

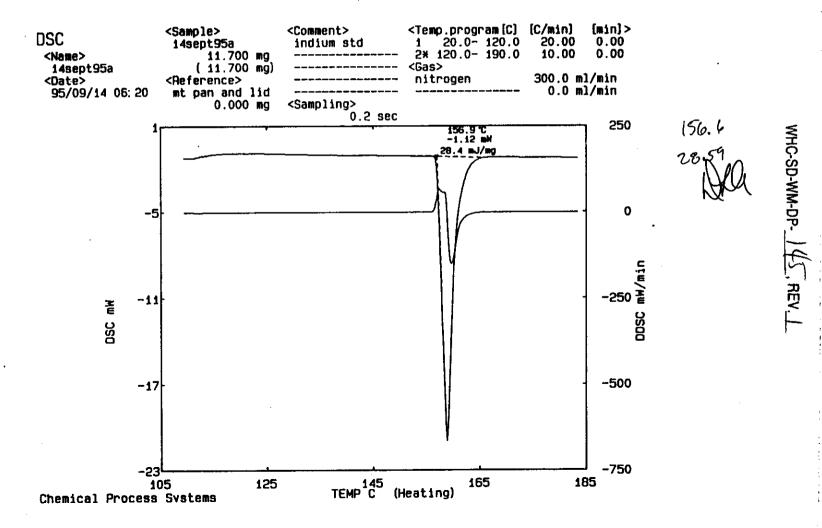
<u>Table 1-6</u>: Tank BY-108, Core 99 Differential Scanning Calorimetric (DSC) Results

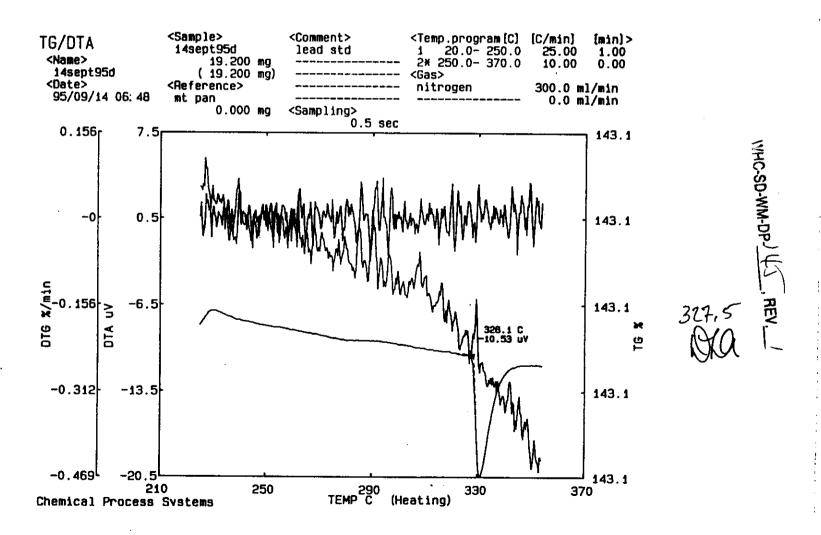
Sample Number	Segment ID	Enthalpy (J/g)	Range (*C)	Onset (°C)
7313	1	725.6 311.2	8-153 193-333	219
7313-2	1	521.2 305.2	16-158 181-343	221
95-07932	2-DL	737.5 -11.6 -14.9	45-226 226-265 265-340	278
95-07932-2	2-DL	1243.6 -35.8 -10.5	20-216 216-270 272-330	279
7315	2A	201.3 108.6	48-227 227-324	250
7315-2	2A	177.3 114.1	43-231 231-322	251
7314	20	263.0 127.3 -2.8	22-204 215-332 375-430	261 385
7314-2	2D	194.7 161.7 -2.8	24-185 187-345 380-430	211
95-07935	3-DL	1178.2 26.1	31-236 236-303	237
95-07935-2	3-DL	1279.2 26.9	32-239 239-300	238
7316	ЗА	303.4 81.1 -1.2	28-230 236-336 400-427	249
7316-2	3A	343.5 101.1 -0.7	12-215 233-327 430-450	259
7322	4A	385.5 33.6	22-183 243-310	259
7322-2	4A	556.7	33-255	
7319	4B	651.6 -191.1	22-193 200-411	207

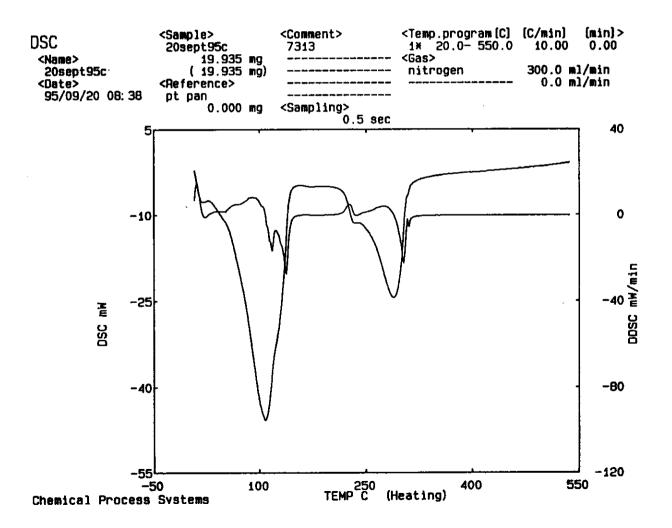
<u>Table 1-6</u>: Tank BY-108, Core 99 Differential Scanning Calorimetric (DSC) Results (Cont.)

Sample Number	Segment ID	Enthalpy (J/g)	Range (*C)	Onset (•C)
7319-2	4B	476.0 -133.2	19-224 224-385	
7318	4C	644.5 -67.0	26-192 192-375	197
7318-2	4C	876.6 -77.8	15-196 200-361	237
7317	4D	693.4 -73.7	23-195 205-369	206
7317-2	4D	613.9 -60.2	30-193 203-350	204

transition. It appears that the onset temperature for the first transition in this endotherm is 220°C, and the onset temperature for the second transition is between 250 and 260°C.

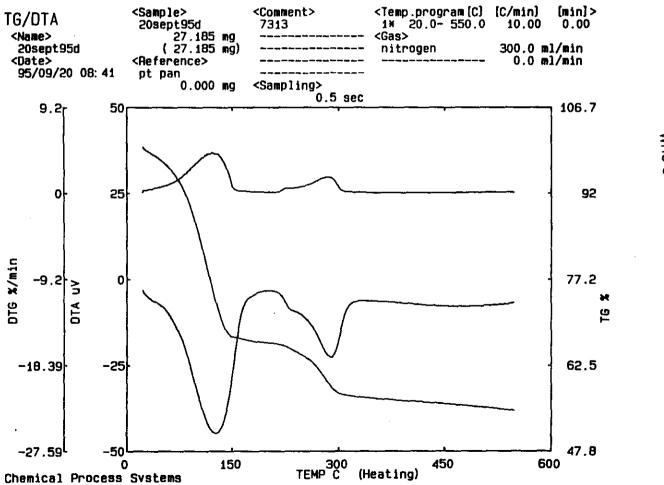

The TGA analysis also indicated two different waste types in this core sample. All of the segments had a large mass loss associated with the water loss endotherm. This mass loss was observed between ambient temperature and 180°C. A small mass loss was observed over the remainder of the temperature range of the TGA analysis for all of the Segment 4 samples, but no significant transitions were observed at higher temperatures. In the Segment 1 through 3 solid samples, a second significant mass loss was observed. This mass loss has an onset temperature of approximately 245°C. This transition correlates with the second endothermic transition observed in the DSC analyses. These samples also continued to have a small mass loss throughout the remainder of the temperature range.


<u>Table 1-7</u>: Tank BY-108, Core 99 Thermogravimetric Analysis (TGA) Results


Sample	Segment	Range (°C)	Onset (°C)	Mass Loss (%)
7313	1	23-157 157-309 309-548	247	32.7 9.7 2.6
7313-2	1	28-145 145-318 318-548	249	26.1 13.2 3.5
7316	3A	22-212 212-344 344-548	310	14.1 0.9 0.2
7316	3A	40-170 170-548		35.0 1.9
7314	2D	27-198 198-328 328-545	245	17.9 2.2 0.9
7314-2	20	23-203 203-328 328-442 442-545	242 393	15.5 3.3 0.8 0.4
7315	2A	23-136 136-256 256-545		7.8 3.6 0.8
7315-2	2A	23-130 130-215 215-545		6.6 5.2 0.1
7317	4D	23-167 167-550		40.6 5.1
7317-2	4D	22-178 178-549		44.0 3.8
7318	4C	24-173 173-549		35.6 5.3
7318-2	4C	24-172 172-549		36.2 4.5
7319	4B	22-187 187-403 403-548	309	35.3 7.9 1.3

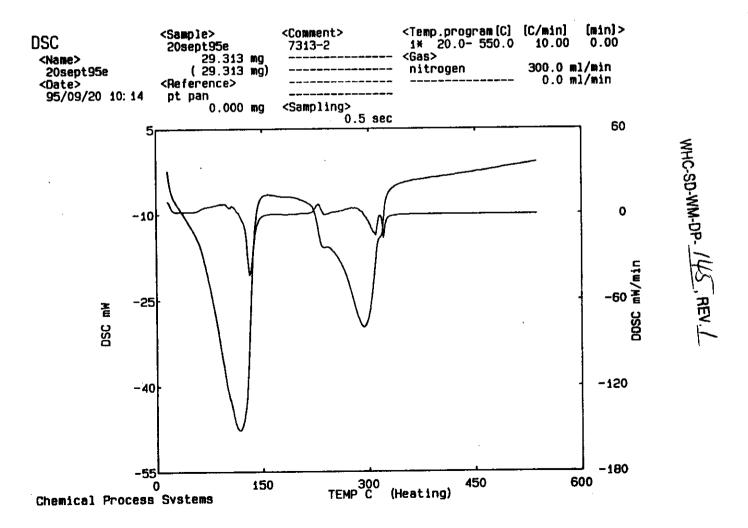
<u>Table 1-7</u>: Tank BY-108, Core 99 Thermogravimetric Analysis (TGA) Results (Cont.)

Sample	Segment	Range (°C)	Onset	Mass Loss (%)						
7319-2	48	23-172 172-412 412-549	300	35.9 8.1 0.8						
7322	4A	22-160 160-550		25.8 3.1						
7322-2	4A	23-171 171-548	_	25.1 3.4						
95-07935	3-DL	23-227 227-548		52.1 0.8						
95-07935	3-DL	24-235 235-548		52.6 0.7						
95-07932	2-DL	28-218 218-548		52.6 0.8						
95-07932	2-DL	23-236 236-547		46.7 0.6						

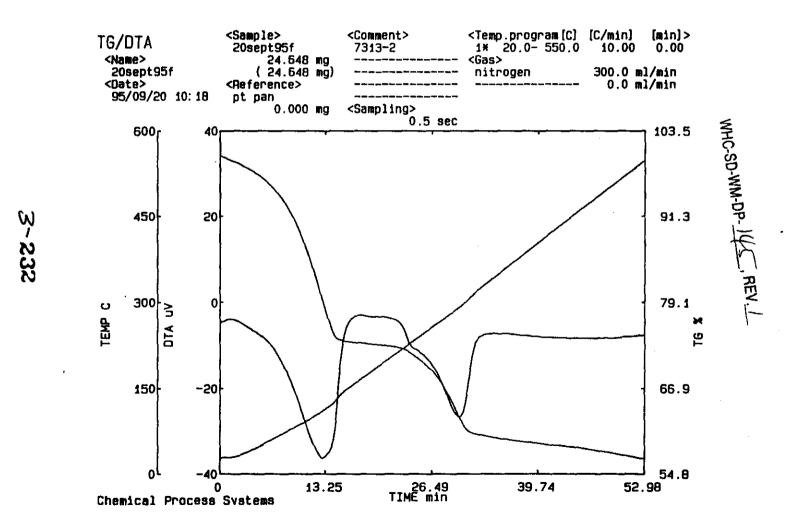






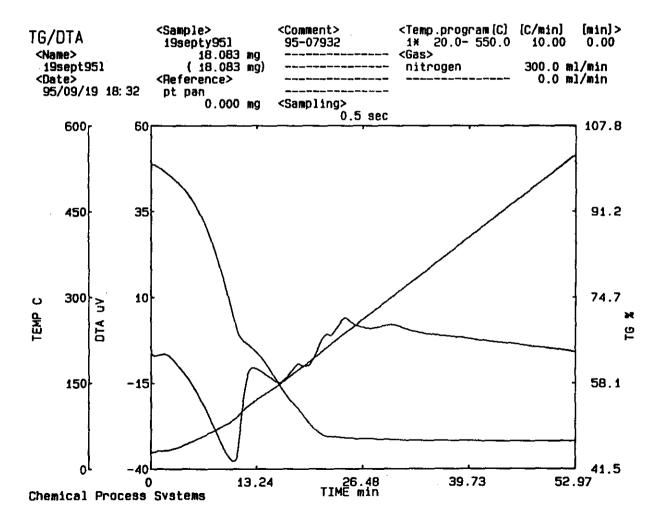


WHC-SD-WM-DP-145, REV.

1An




WHC-SD-WM-DP-145, REV.

IDAN




1,99



IRAN

WHC-SD-WM-DP-145, REV.1



WHC-SD-WM-DP-/45, REV. 1

1An

150

<Comment> 95-07932-2

<Sample>

-70

Chemical Process Systems

20sept95a

<Reference>

30.332 mg (30.332 mg)

<Temp.program[C] [C/min] [min]>
1* 20.0- 550.0 10.00 0.00

300.0 ml/min 0.0 ml/min

-600

600

<Gas>

nitrogen

450

TEMP C (Heating)

WHC-SD-WM-DP-/45, REV.

DSC

<Name>
20sept95a

<Comment> 95-07932-2

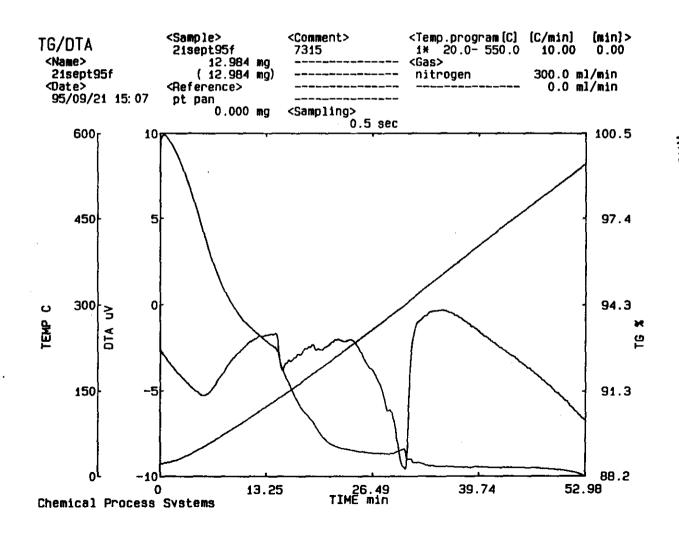
<Sample>

20sept95b

TG/DTA

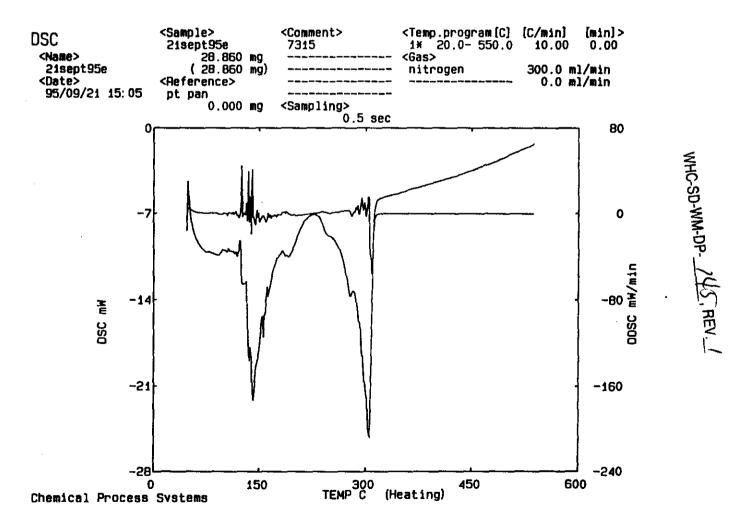
Chemical Process Systems

Ş

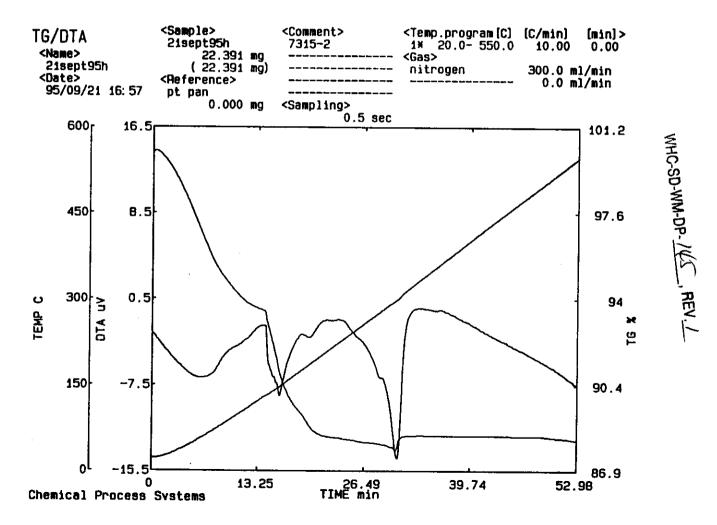

236

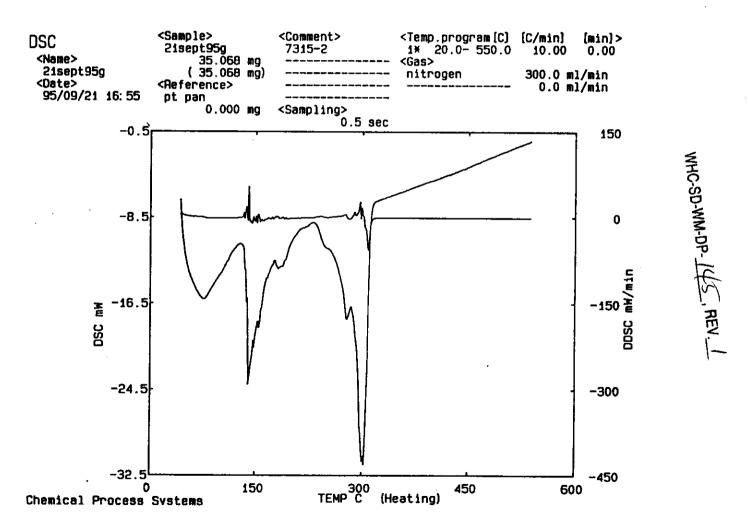
<Temp.program [C]
1* 20.0- 550.0</pre>

<Gas>

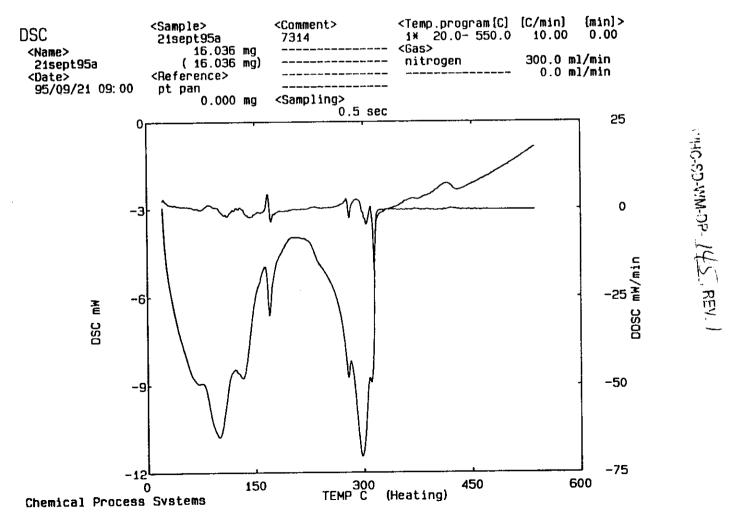

[C/min] 10.00

(min) > 0.00

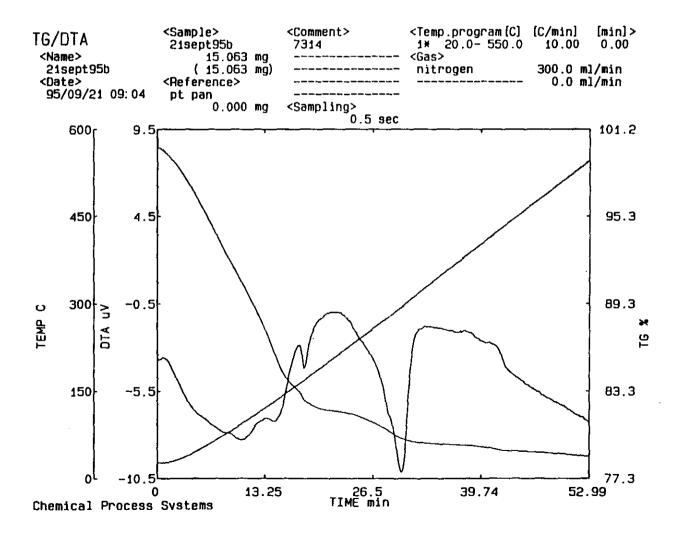




WHC-SD-WM-DP-145, REV.

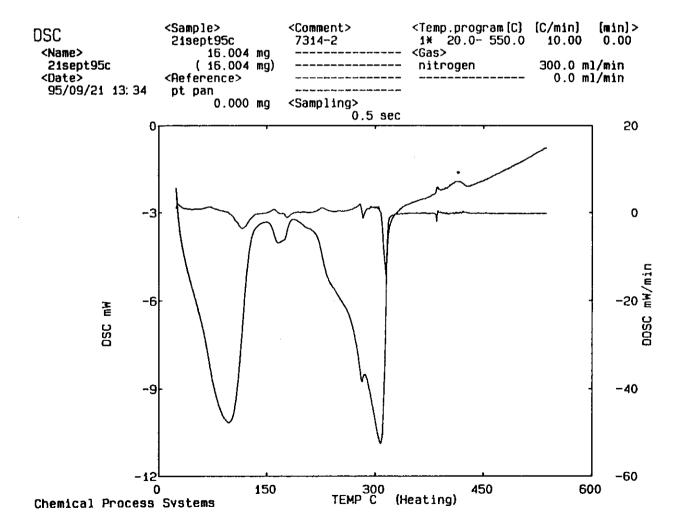
Men



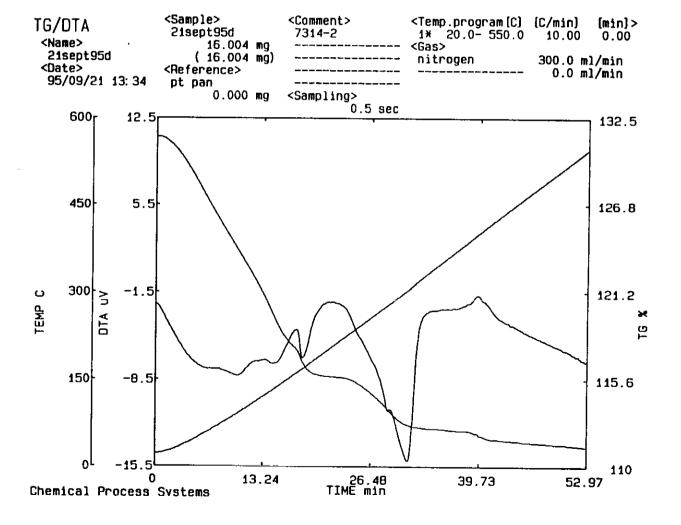

in



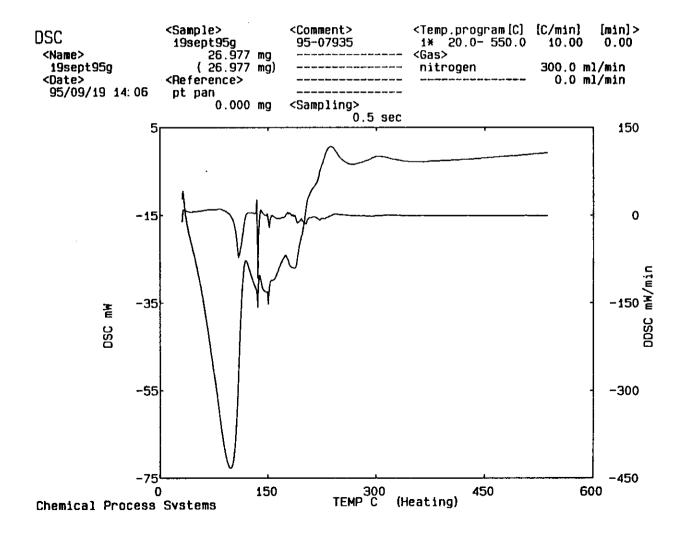




1.000

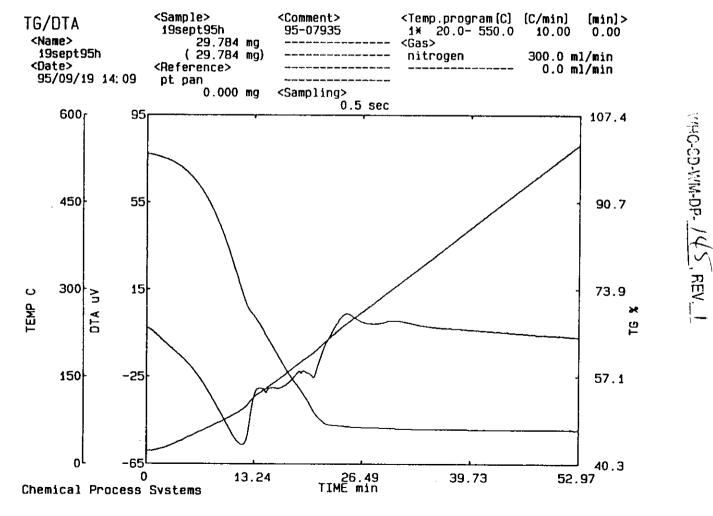



MARIA

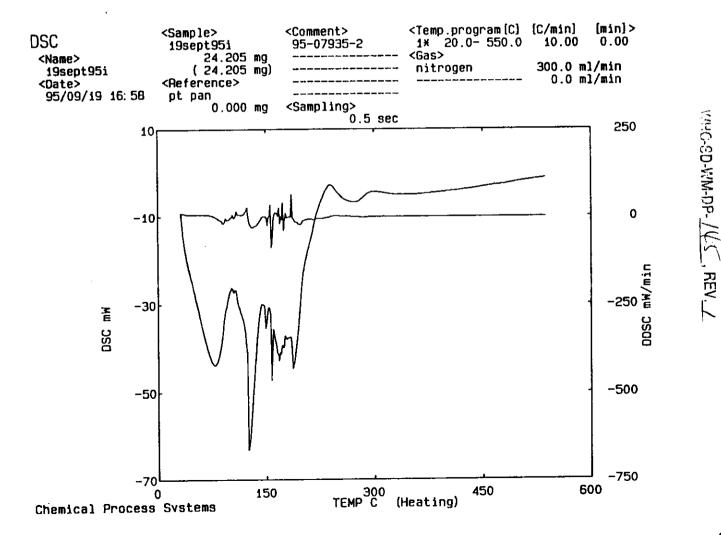



"HIC-SD-WM-DP-145, REV.

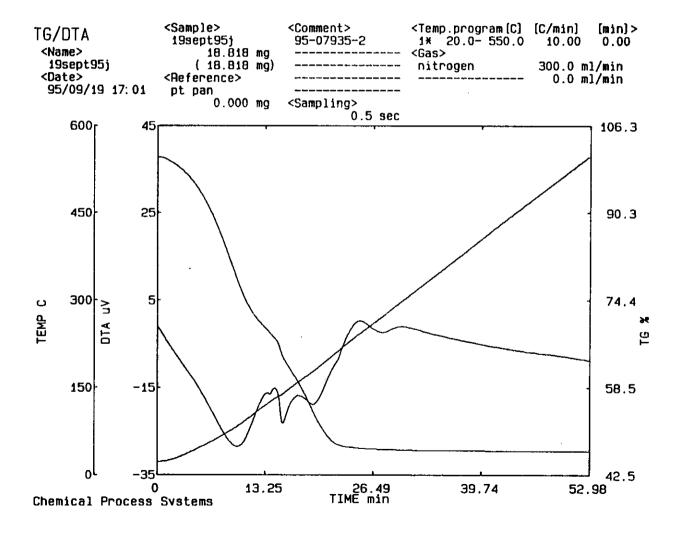



17:10-50-WW-DP- 145, REV. 1



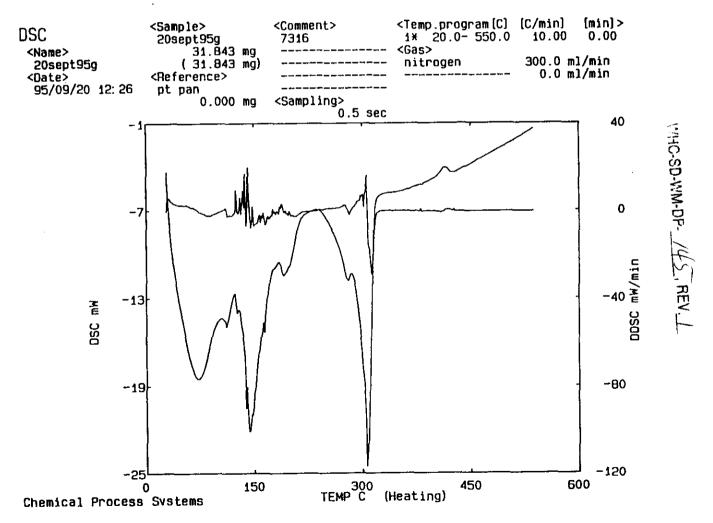

MAIC-SD-WM-DR- 145, REV. 1

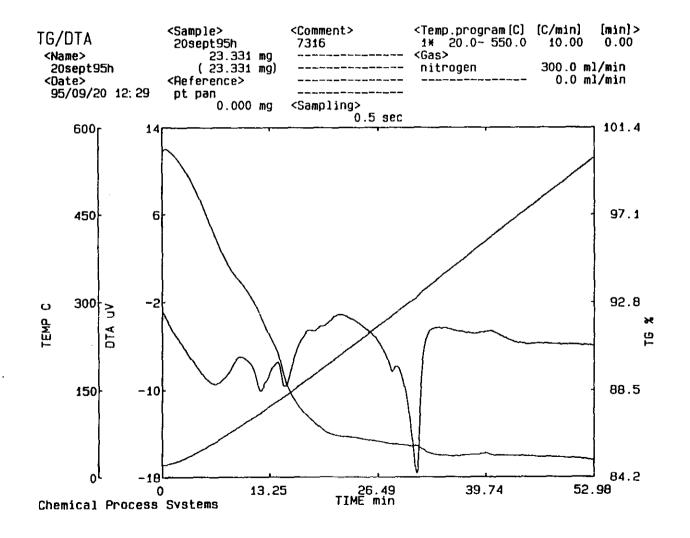



"UC-CD-WM-DF- 145, REV. L

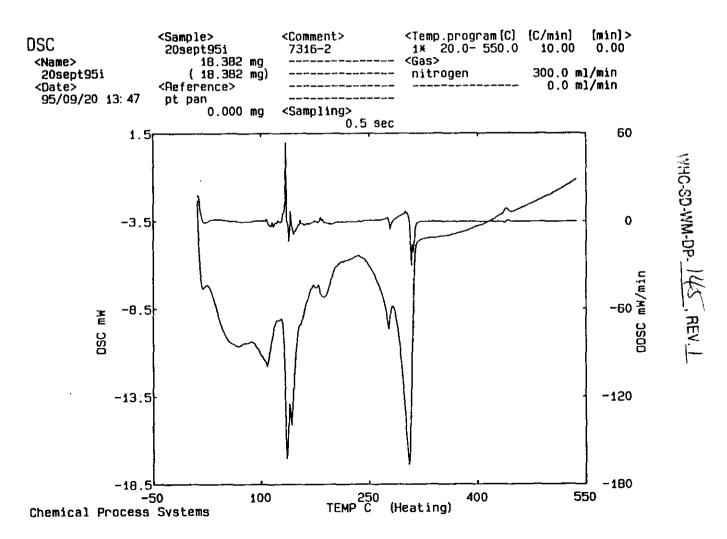


1.An

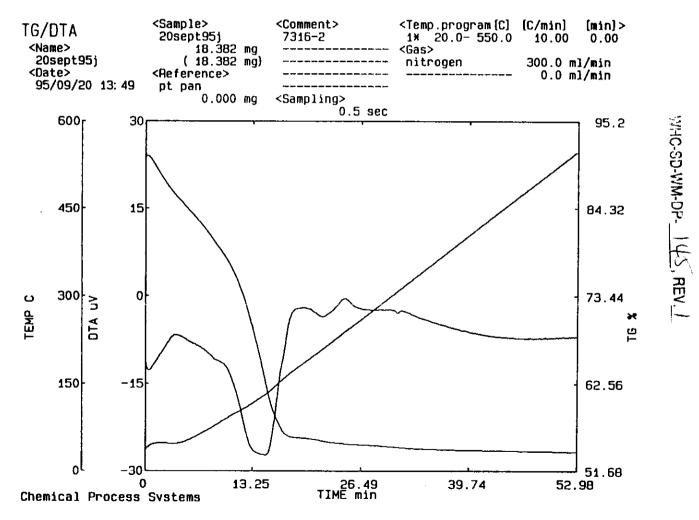


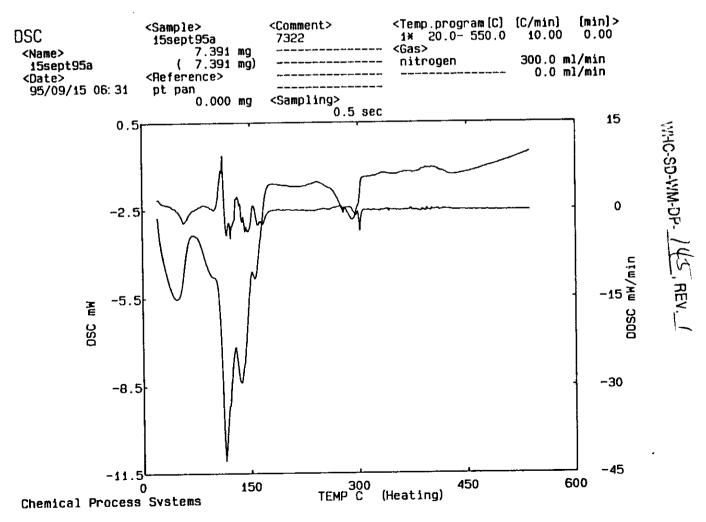


MAN



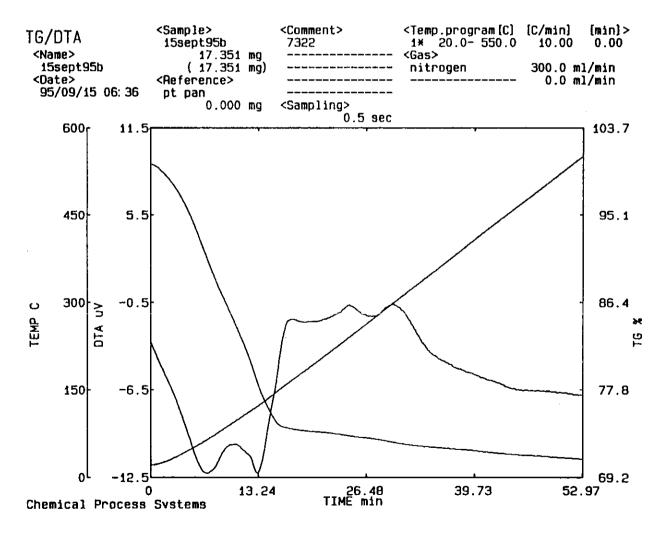

WHC-SD-WM-DP- 145, REV.

Wa



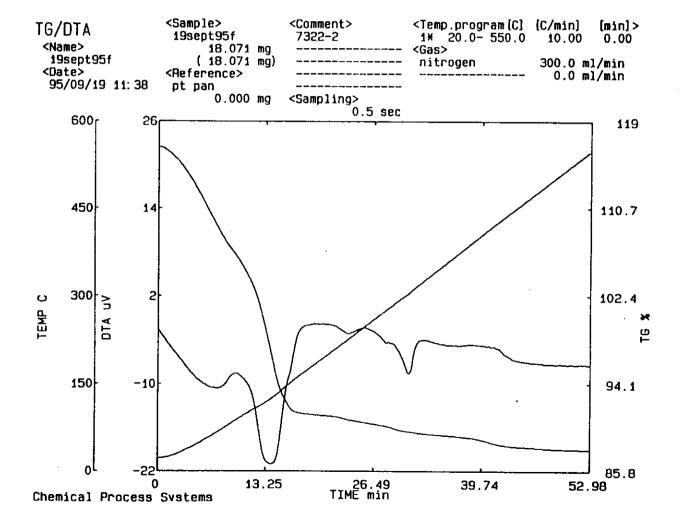

WHC-SD-WM-DP- /45, REV_




1.ORA






1. OLO

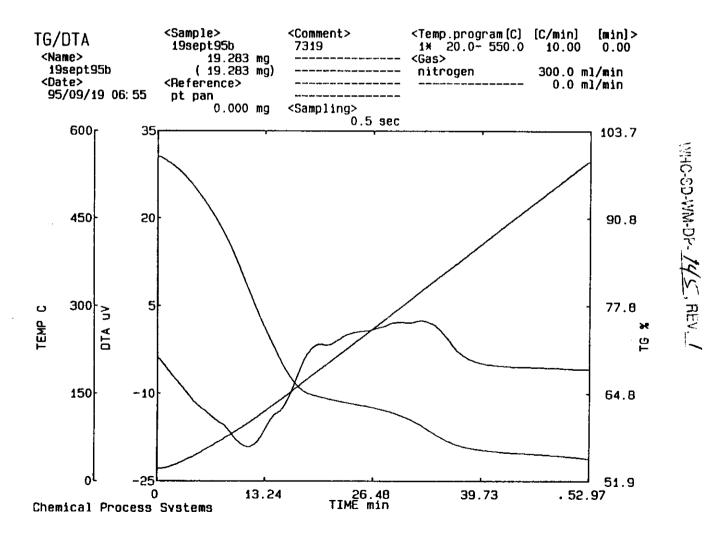


WHC-SD-WM-DP- 145, REV. 1

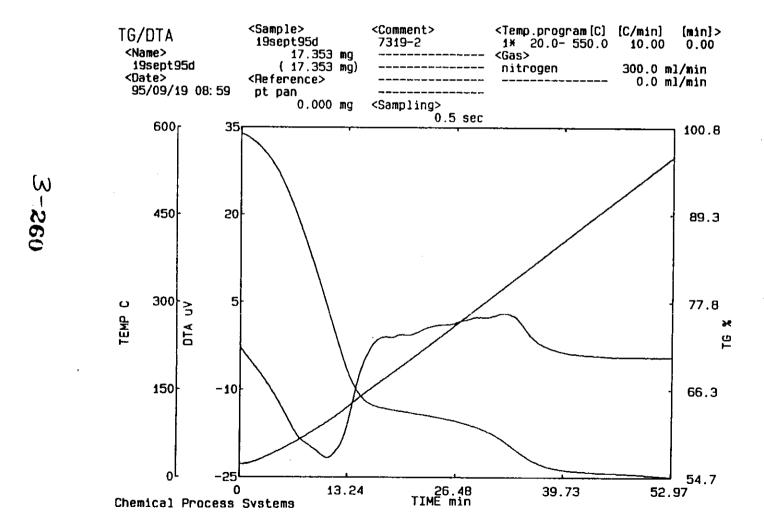

Men

MAPA



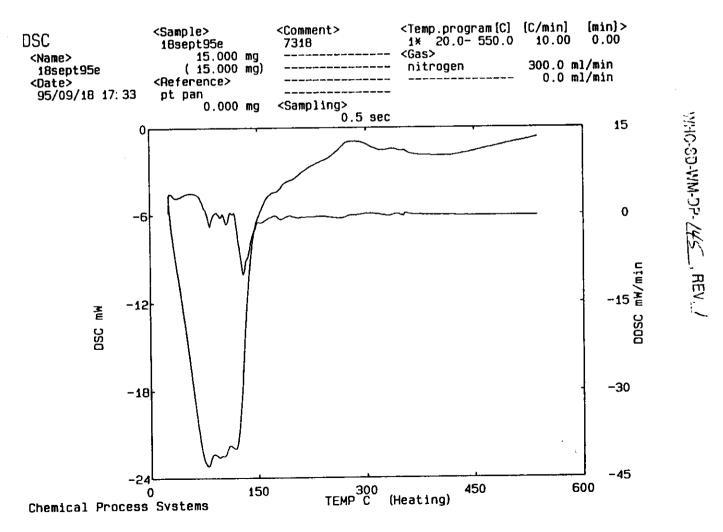

WHO-SD-WM-DF-145, REV

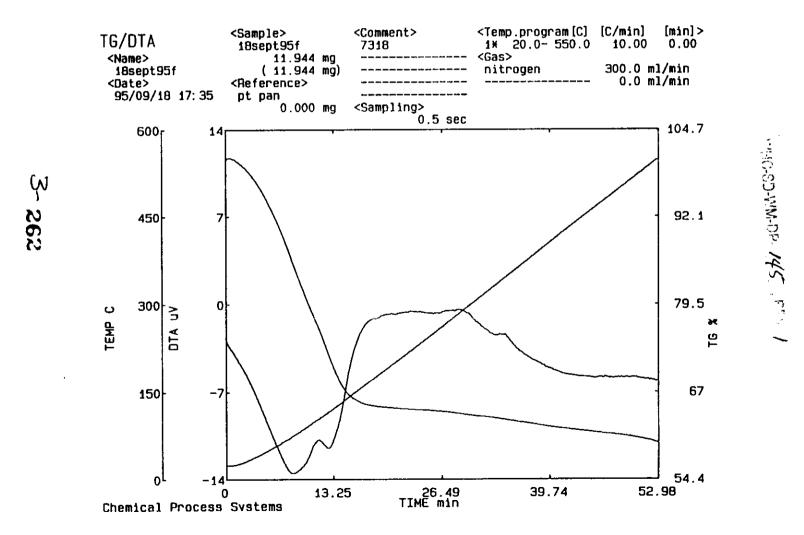
10RO



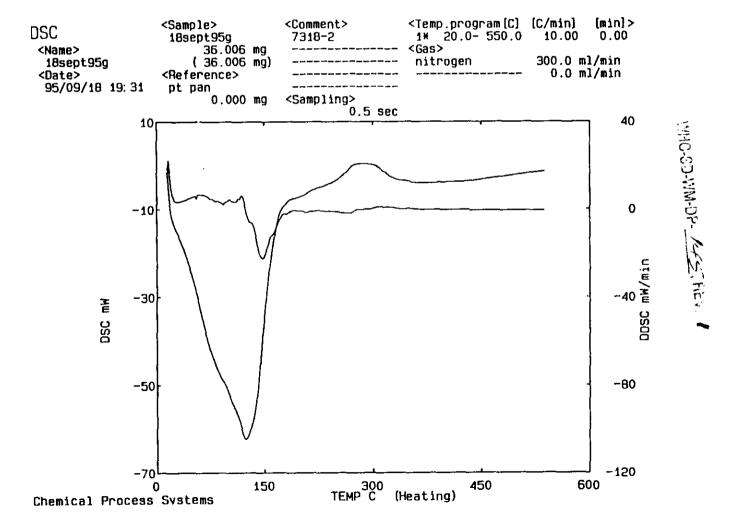

WHO-SD-WM-DP-145, REV.

1. Oxn



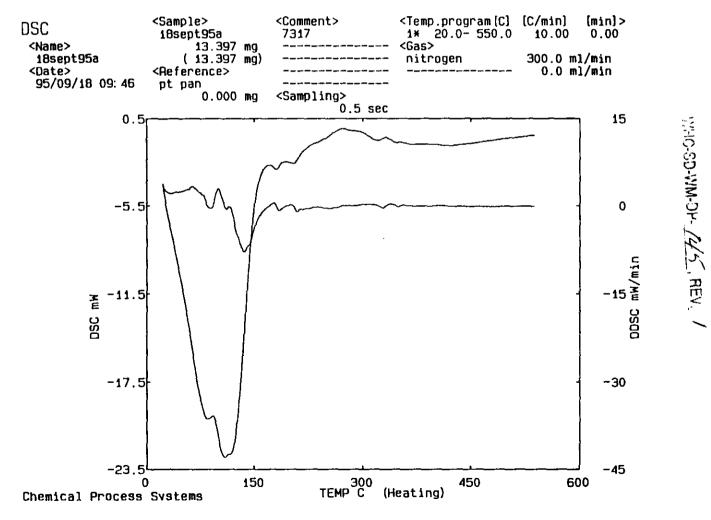


1,0en



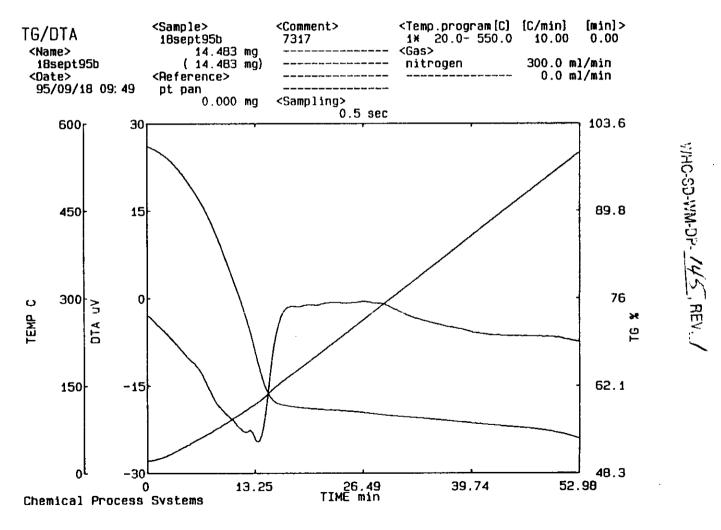

WHC-CD-WM-DP- 145, FEV 1

Ren

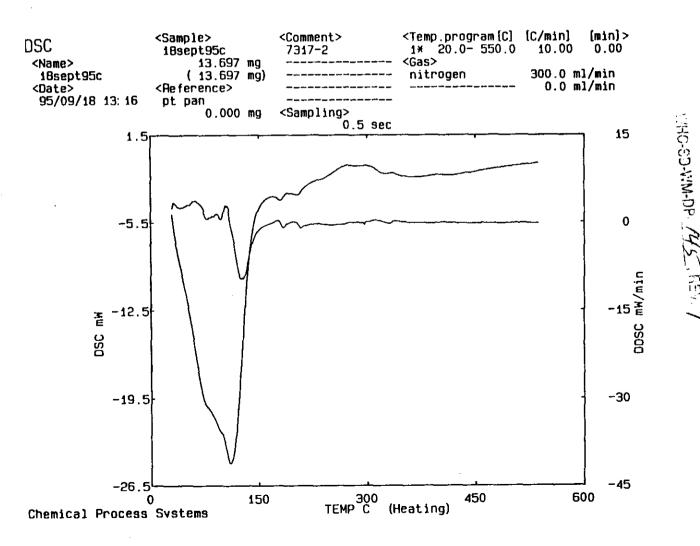


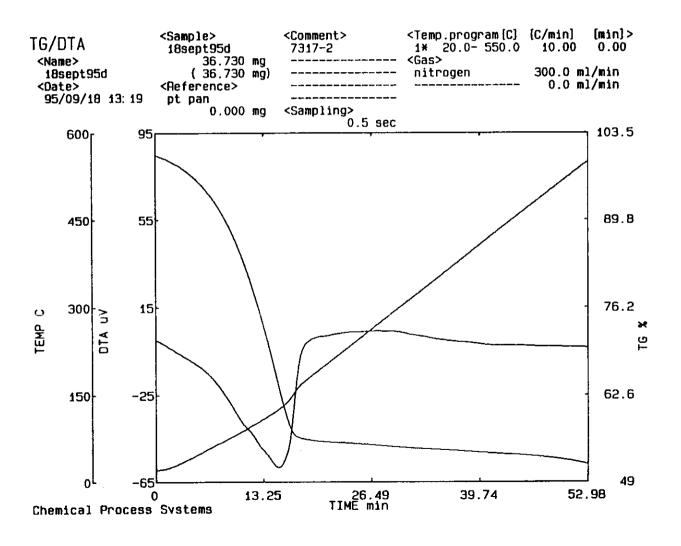



MA




INK,


1.040




190



1.910





WHO-SD-WM-DP-145, REV.

LALA

WHO-SD-WM-DP-145, REV. /

## **B3 - BULK DENSITY ANALYSIS**

THIS PAGE INTENTIONALLY LEFT BLANK.

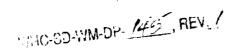
DATE TO QC: 10/09/95 HC-SD-WM-DP-145, REV. /

### DATA QUALITY REVIEW

I have reviewed the following data for completeness and for compliance with project requirements.

Analyte - BULK DENSITY

Data Package/Report - BY-108 Core 99


Project No. - 21372

ACL Numbers - 7322 7317 7313 7314 7316 7318 7319 7315 7397 7398

PNL ACL Quality Representative

Date

# THIS PAGE INTENTIONALLY LEFT BLANK.



Reference Test Instruction: T195-TWC-01

Data Sheet: BY108-C99-Density

Page 1 of 6

## Density Measurement Tank 241-BY-108 Core 99

#### General Instruction:

- 1. Keep the sample in a sealed container as much as possible to prevent the sample from drying.
- 2. All requested weights fro sample plus container are for a closed container.
- 3. Identify the instrument used for any measurement by reference number or by calibration ID and provide the calibration expiration date.
- 4. Check the blances daily with the wieghts i the cell. Record the check weights on the test instruction or data sheets.

N	181	rF	Нi	5	ŀ
17	1CX			3	ι.

Calib ID 388-06-01-020 Calib. Exp. Date 11/7/95

Signature Scart V2 Date 9/22/23 LRB _____ Page ____

1/30-80-WM-DF- 145, Fig. 1

Measured Mass 199,998 g

1.

Reference Test Instruction: T195-TWC-01
Data Sheet: BY108-C99-Density
Page 2 of 6

	Actual Massg			
2.	Measure the density of each of the solid s Oil should be used as the fluid. Graduated volume of the mineral oil and the sample.	f cylinders should b	e used to determin	od. Mineral ne the
	Sample	#7322		
	mass	Volume		
oil	21.374 g	oil	3, 20	ml
oil + sa	ample21.6071 g	oil + sample	3.35	ml
sample	ample 21.6071 g 0.327 0.233 g 9 9 128/95	sample	0.15	ml
descrip	otion <u>peanut</u> butter t	spe sludge	_	
density	otion <u>peanut</u> butter to 0.2  y = sample mass/sample volume=	27 g-T9/28/9.	5 /. 5 ml= +	51 9 55 g/ml
	Sample mass			
oil	q oil		<i>4.15</i> ml	
oil + sa	· · · · · · · · · · · · · · · · · · ·	sample		
sample	- 4.6.1		<u>0.31</u> mi	
descrip	otion peanut butter type	Sludge		
density	/ = sample mass/sample volume=0.4	81 g/ 0.31	ml= <i>/,55</i>	g/ml
Signatu	ore Sout V2 Date	e <u>9/22/45</u> l	_RB P	age

Check the balance calibration with a the check weight available in the cell.

## WHO-SD-WM-DF-145, REV. /

Reference Test Instruction: T195-TWC-01 Data Sheet: BY108-C99-Density Page 3 of 6

Sample	#7313
--------	-------

	mass		Volume	
oil	21.631 g	oil	3.80	_ml
oil + sample	21.950 g	oil + sample	4,00	ml
sample	0.319 g	sample	٥. ٤٥	ml
				•
description hard	dry solids			
	V			
density = sample m	ass/sample volume=	0.319 g/	0.20 ml=	/. 60 g/mi
	San	nple #7314		
	mass		Volume	
oil	7/.950 g	oil	4.00	_ml
oil + sample2	2, 370 g	oil + sample	4.3/	ml
sample	0.420 g		0.31	
descriptiona/m	ost liquid	like		
	. <b>'</b>			
density = sample m	ass/sample volume=	0.420 g/	ml=	/. 35 g/ml
	Sar	mple #7316		
	mass		Volume	
oil	20.920 g	oil	3.00	_ml
oil + sample	21,234 g	oil + sample	3.20	m1
sample	0.314 g	sample .	5.50	ml
,				
description har	l, dry Solids		·	
	V			
density = sample m	ass/sample volume=	0.314 9/	0.20 ml=	1.57 g/ml
C. A	2 -	9/	·	
Signature 300	72	Date 1/22/	95 LRB	Page

## MHC-8D-WM-DP-145, REV. /

Reference Test Instruction: T195-TWC-01

Data Sheet: BY108-C99-Density

Page 4 of 6

Sample #7318	
mass	Volume
oil <u>20.367</u> g oil	<u>2. 3≎</u> ml
oil + sample 20.520 g oil + sample	mi
sample <u>o./53</u> g sample	mi
description <u>peanut</u> butter	
density = sample mass/sample volume= 0.153 g/	<u>0.1⊘</u> ml= <u>/.53</u> g/ml
Sample #7319	
7 9/21/05 mass	Volume
oil 21.243 <del>20.532</del> g oil	3.35ml
oil + sample 21.546 30.759 g oil + sample	<u>3.55</u> ml
sample 0.3c3 0.3c3 g sample	ml
description $\frac{\rho canut butter like slue}{density = sample mass/sample volume= \frac{0.303}{g/}$	_
Sample #7315	
mass	Volume not enough
oilg oil	ml Sample to
oil + sampleg oil + sample	ml determine
sample g sample	m1 dinsity
description small balls of solid material	•
density = sample mass/sample volume=g/_	ml=g/ml
Signature Suff 72 Date 9/22/	7.5. LRB Page

## WHO-8D-WM-DH-145, REV. 1

Reference Test Instruction: T195-TWC-01

Data Sheet: BY108-C99-Density

Page 5 of 6

3. Measure the density of each of the drainable liquid samples using the a fixed pipet to deliver an accurate volume and measuring the mass of the sample with a balance.

Record these volumes and masses.

Sample # 7397								
sample volume	<u>/5.0</u> μL							
sample mass	20.3/6 mg							
density = sample ma	ass/sample volume=_	20,316	mg/	15.0	μL=	1.35	_g/ml	
sample volume								
	<u>30,332</u> mg							
density = sample ma	ass/sample volume=_	30-332	mg/	25.0	μL=	7.21	g/m1	
sample volume	75 0 ul							
sample mass								
	ass/sample volume=_	18.083	ma/	15.0	uL=	1.21	a/ml	
density - sample m	ass/sample volume=_	•						
sample volume	25.0 µL							
sample mass								
density = sample m	ass/sample volume=_	30.332	mg/	25.0	_μL=_	1.21	g/ml	
description <u>c/c</u>	ar liquid	with	Smal	l am	ount	of settle	ed soli	
	,							
	-							
<i>_ A</i>	77	Date .	ahale.		_	_		
Signature 5		Date .	4242	LR	R	Page		

## WHC-SD-WM-DH- 145, REV /

Reference Test Instruction: T195-TWC-01
Data Sheet: BY108-C99-Density

Page 6 of 6

Sample # 7398 sample volume 20.0 uL sample mass 26,977 mg density = sample mass/sample volume= 24.977 mg/ 20.0 µL= 1.35 g/ml 20,000 µL sample volume · 24,205 ma sample mass density = sample mass/sample volume= 24.205 mg/ 20.000 µL= 1.21 g/ml sample volume ____25,000 µL 24.784 mg sample mass density = sample mass/sample volume=  $\frac{29.784}{\text{mg}}$  mg/  $\frac{25.0}{\text{mg}}$   $\mu$ L=  $\frac{1.19}{\text{g/ml}}$ sample volume <u> 15.0</u> uL __*18.818* _mg sample mass density = sample mass/sample volume=  $\frac{18.8/8 \text{ mg}}{15.0 \text{ µL}} = \frac{1.25 \text{ g/ml}}{15.0 \text{ µL}}$ description a for liquid with a small amount of settled solids

	Sunst			2/22/50			
Signature	2011	V	Date	46615	LRB	 Page	